Десять великих идей науки. Как устроен наш мир. - [78]
Захватывающая красота центрально-симметричной кулоновской потенциальной энергии, которую следует считать самым великолепным видом потенциальной энергии, из тех, что можно вообразить, теряется, как только в атоме появляется второй электрон. Как мы видели в главе 5, энергетические уровни атома водорода служат хорошим первым приближением для энергетических уровней всех других атомов. Тогда, при условии, что мы допускаем изменения энергии, обусловленные электрическим отталкиванием между электронами (приводящим, например, к тому, что электроны на s-орбиталях имеют несколько меньшую энергию, чем электроны на p-орбиталях), структура периодической таблицы возникает автоматически. Однако существует другой, более изощренный, основанный на симметрии способ понимания смысла периодической таблицы.
В первом приближении мы можем выразить структуры атомов всех элементов в терминах заполнения водородоподобных атомных орбиталей. Поскольку энергии орбиталей в каждой оболочке одинаковы, этот подход даст забавный вид периодической таблицы. Так как все s-орбитали и p-орбитали (так же как d-орбитали и f-орбитали) в оболочке имеют одну и ту же энергию, мы утрачиваем структуру таблицы, и оказывается, что нет никаких причин для появления у элементов разных химических индивидуальностей. Если угодно, можно представить себе, что группы таблицы (вертикальные колонки) недифференцированы и сложены в кучу одна поверх другой. Однако, поскольку электроны на самом деле взаимодействуют друг с другом и нарушают четырехмерную симметрию кулоновского потенциала, s- и p-орбитали данной оболочки обладают разными энергиями. Коль скоро мы допустили нарушение симметрии, периодическая таблица кристаллизуется, образуя знакомую нам форму (рис. 6.8). Поэтому химия, выраженная в периодической таблице, является изображением лежащей в ее основе симметрии кулоновской потенциальной энергии, нарушаемой взаимодействиями присутствующих в каждом атоме электронов. С этой точки зрения химия вообще есть описание симметрии и ее нарушений, описание отклонений от совершенной симметрии, наделяющих химические элементы индивидуальностью. Менделеев немного знал о симметрии, ничего не знал о скрытой симметрии и еще меньше о нарушении симметрии. Он, надеюсь, увлекся бы мыслью, что его таблица является описанием следствий нарушения симметрии кулоновской потенциальной энергии.
Рис. 6.8. Это фантастическое изображение структуры периодической таблицы. Если мы сбросим со счета взаимодействие между электронами, то каждый электрон будет подвергаться действию высоко симметричного кулоновского потенциала ядра, и периодическая таблица не будет иметь структуры (периоды, однако, сохранятся): это представлено штабелем групп слева на иллюстрации. Но если мы допускаем нарушение симметрии (то есть принимаем в расчет отталкивание между электронами), группы развертываются в знакомую структуру периодической таблицы.
Но этого мало. Мы видели также в главе 5, что принцип запрета Паули, не позволяющий более чем двум электронам занимать одну орбиталь, предотвращает скопление электронов на орбите, и если два электрона все же заняли одну орбиталь, то их спины должны быть парными (один спин направлен по часовой стрелке, а другой — против часовой стрелки). Этот принцип тоже имеет корни в симметрии, поэтому форма периодической таблицы, тот факт, что атомы имеют объем, и возможность наблюдать, что мы отличны от нашего окружения, все это имеет корни в симметрии. Как мы сейчас увидим, симметрия, лежащая в основе принципа Паули, имеет довольно тонкую природу, но ее нетрудно понять.
Так как, согласно квантовой теории, мы не можем проследить траектории электронов, любой электрон во Вселенной совершенно неотличим от любого другого электрона. Эта неотличимость предполагает, что если бы мы могли поменять местами любые два электрона в атоме, все свойства атома остались бы теми же самыми. Другими словами, электроны демонстрируют перестановочную симметрию.
Здесь мне придется немного обобщить понятие орбитали и предвосхитить один или два аспекта более широкого обсуждения в главе 7; если нижеследующее обсуждение затруднит вас, вернитесь к нему после того, как вы прочтете первую половину этой главы. Мы видели, что орбиталь сообщает нам о вероятности положения электрона в атоме. Орбиталь является частным случаем волновой функции, которая есть решение уравнения Шредингера для любой частицы в окружении любого типа, а не только для электрона в атоме. С этого момента мы будем пользоваться этим более общим термином. Второе, что нам следует знать, это то, что вероятность нахождения частицы в данной точке — которую мы до сих пор представляли плотностью тени — задается квадратом значения ее волновой функции в этой точке. Одним из следствий этой интерпретации является то, что волновая функция и ее негатив с противоположным знаком имеют одинаковый физический смысл (потому что одинаковы их квадраты). Это сохраняет открытой возможность того, что волновая функция может изменить знак при обмене местами двух электронов: мы просто не заметили бы этого. Так оно и есть на самом деле. Паули обнаружил, что он может объяснить определенные детали излучения атомов, лишь если волновая функция атома меняет знак при перестановке любых двух электронов. Мы говорим, что волновая функция должна быть
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.