Десять великих идей науки. Как устроен наш мир. - [37]
Вторым решающим шагом является постановка этой процедуры на конвейерную основу и получение возможности распознавать тысячи оснований за час. Здесь существуют два основных подхода. Один состоит в работе с последовательностью известных обрезков ДНК. При другом, «пулеметном», подходе ДНК дробят на мириады кусочков, а затем исследуют состав этой смеси. В последнем случае задачей является восстановление последовательности ДНК по ее фрагментам. На этом этапе центральную роль в восстановлении начинают исполнять суперкомпьютеры. Вообще говоря, подход с известными фрагментами является более точным, а пулеметный подход более быстрым. На практике каждый из них поддерживает другой.
Первый эскиз генома человека был обнародован в 2001 г., примерно через пятьдесят лет после определения структуры ДНК и почти через сто лет после обнаружения работы Менделя и возникновения генетики.
Глава третья
Энергия
Универсализация бухгалтерии
Энергия — это вечный восторг.
Уильям Блейк
Ни пульсация биосферы, возникшая из неорганической Земли, ни молекулярная активность, поддерживающая и расширяющая ее сегодня, не могли бы существовать без притока энергии от Солнца. Но что это за вещь, которую мы называем энергией? Это слово может сорваться с губ каждого, а ученый может увидеть в нем то, что связывает Вселенную в постижимую и живую целостность; но что это такое на самом деле?
Поэты, в своей неподражаемой манере, создали концепцию энергии задолго до того, как она попела в поле зрения ученых. Так сэр Филип Сидни, в своей, написанной в 1581 г., Защите поэзии привлек внимание к «тому, что есть мощь или Energie (как называли ее греки) писателя». Он имел в виду скорее энергичность выражения, чем характеристику движения пули, вылетевшей из мушкета, которая впоследствии убила его. Греки действительно называли это, что переводится буквально как «работа», и мы можем уловить этимологический путь, приведший к понятию литературной энергичности. В наши дни широкая публика приняла такое понимание энергии близко к сердцу и уверила себя, будто точно знает, что это такое, находит это ценным, чувствует существенный вклад этого в современный мир и страшится перспективы утраты этого.
Энергия все еще является объектом литературного дискурса, но она получила новую, богатую и точно очерченную жизнь в науке. Так было не всегда. Научное использование этого термина может быть прослежено вспять до 1807 г., когда Томас Юнг (1773-1829), занимавший должность профессора натурфилософии в такой твердыне науки, какой было Королевское общество Великобритании, а позднее, в замечательно универсальном духе времени, внесший вклад в расшифровку надписи на розеттском камне, конфисковал этот термин для науки, когда написал, что «термин энергия может быть с великим удобством применен для обозначения произведения массы или веса тела на квадрат численного выражения его скорости». Как и многие пионерские сообщения, заявление Юнга о «великом удобстве» оказалось полупропечённым, и нам придется приложить некую работу, чтобы завершить его выпечку. Проделав ее, мы придем к пониманию современной интерпретации энергии и увидим значение и важность ее сохранения.
Чтобы уловить суть природы энергии, нам необходимо понять две очень важные вещи, касающиеся событий и процессов в мире. Одна касается характеристик движения тел в пространстве; другая — природы теплоты. Описание движения в пространстве было в основном завершено к концу семнадцатого столетия. Потребовалось на удивление долгое время, чтобы сразиться с природой тепла и в конце концов одержать победу. Этой цели не удавалось достигнуть до середины девятнадцатого века. Как только движение и тепло были поняты, ученые успешно расправились и с природой событий. Или так они в то время думали.
Греки размышляли о движении тел, хотя и без всякой пользы, и две тысячи лет держали мир в заблуждении: их стиль вопрошания из кресла гораздо лучше подходил для математики и этики, чем для физики. Так, Аристотель (384-322 до н.э.) умозаключил, что стрела удерживается в полете действием воздушных вихрей, создаваемых ею, и поэтому сделал вывод, что в вакууме стрела должна быстро остановиться. Как это часто бывает, наука проясняет вопрос, превращая общепринятое мнение в противоположное, и мы теперь знаем, что верно в точности обратное: сопротивление воздуха замедляет движение стрелы, а не толкает ее вперед. Свидетельств о необходимости поддерживающей силы в те тяжкие времена было множество, ибо рогатому скоту приходилось напрягаться, чтобы удерживать в движении скрипучие деревянные повозки. Абсурдно было бы думать обратное, ведь тогда селянам пришлось бы запрягать рогатый скот позади движущейся телеги, чтобы остановить ее естественное движение. Изобретательный ум Аристотеля увидел в воздухе вихри, толкающие стрелу вперед и тем самым спасающие его теорию.
Аристотель имел и более общие иллюзии относительно причины событий и движения объектов. Как феноменологические рассуждения, его иллюзии были вполне осмысленными, и он заслуживает восхищения за непрестанный поиск объяснений и выпытывание у Природы ответов. Однако, помимо абсолютной ложности, его мнения были лишены того, что мы сегодня называем объяснительной силой, и совершенно не поддавались переложению на язык цифр. Например, он представлял себе ряд концентрических сфер со сферической Землей в центре, окруженной последовательно сферой воды, сферой воздуха и сферой огня, а все это в целом заключено в хрустальные сферы небес. В его модели вещество искало свое природное место, так, первоначально подброшенные кверху земные объекты падали на Землю, а языки пламени рвались наверх, стремясь к своему природному обиталищу. Легко отыскать дыры в этой модели с нашей современной точки зрения, но она владела умами людей на протяжении двух тысячелетий, возможно, потому, что люди находились во власти традиции, требовавшей учиться у авторитетов, не полагаясь на собственные наблюдения, или, может быть, потому, что в упражнениях своей любознательности им недоставало мужества, необходимого для того, чтобы противопоставить наблюдения авторитету.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.