Десять самых красивых экспериментов в истории науки - [38]
Рентген совершил свое удивительное открытие, исследуя светящуюся точку, которая возникает в конце вакуумной стеклянной «разрядной трубки», когда достаточно высокое напряжение подается на две металлические пластины внутри нее — отрицательно заряженный катод и положительно заряженный анод (эти термины появились благодаря Фарадею). Проходящие через разреженный воздух, эти катодные лучи оказались весьма загадочными. Если внутрь этой лампы поместить препятствие — химик и медиум Уильям Крукс для этой цели использовал мальтийский крест, — то его тень появится на флюоресцирующем стекле; это означает, что лучи, как пуля, движутся по прямой. Если рядом с трубкой разместить магнит, то пучок сместится вбок. Если внутрь трубки поместить драгоценный камень, то он начнет флюоресцировать. Кроме того, эти лучи представляли собой поток вещества, которое вращало крохотную крыльчатку в лампе. Крукс объявил: «Теперь физикам известны четыре состояния вещества — твердое, жидкое, газообразное и лучистое.»
Рентген обнаружил еще большую странность: если пучок ударяет в конец трубки с достаточной силой, то возникает совершенно иное излучение, достаточно мощное для того, чтобы проникать сквозь плоть. Не прошло и года, как Анри Беккерель обнаружил в Париже еще одну форму проникающих лучей, испускаемых кусочками урана, проходящих через непрозрачный экран и оставляющих след на фотопластине. Вскоре стало ясно, что оба типа излучения могут ионизировать газ и наделять его электрическим зарядом. Теперь мы знаем, что это происходит потому, что обнаруженные лучи выбивают электроны из атомов.
Вернувшись из Европы, чтобы приступить к работе в Чикагском университете, где в то время царствовал Майкельсон, Милликен издалека наблюдал за работами некоторых величайших европейских ученых, увлеченных новой физикой. В Кавендишской лаборатории Кембриджа Дж. Дж. Томсон показал, что пучок можно отклонять не только магнитом, но и сильным электрическим полем. Герц неудачно провел эксперимент, в котором пучок проходил между параллельными пластинами внутри вакуумной лампы. Когда на пластины подавалось напряжение от электрического элемента, пучок не смещался. Герц решил, что эти лучи — нематериальные возмущения эфира. (Урок Майкельсона-Морли все еще не был усвоен.)
Томсон подозревал, что Герц недостаточно откачал воздух из лампы и оставшиеся молекулы закорачивают пластины так, словно они оказываются под дождем. При более высоком вакууме он смог подтолкнуть пучок в сторону положительного полюса — серьезное указание на то. что катодные лучи состоят из отрицательно заряженного вещества, частиц электричества, или электронов.
Я не собирался покупать установку Томсона, но красота эксперимента настолько соблазнила меня, что я не устоял: в простой деревянной рамке установлена сферическая вакуумная трубка с заострениями, а большие медные катушки Гельмгольца (названы так в честь немецкого физика Германа фон Гельмгольца) крепятся по бокам. При расстоянии между ними, равном их радиусу (15 см), они создавали равномерное магнитное поле, в котором оказывалась трубка. Прибор был изготовлен в Германии для демонстрации на уроках физики, и посеревшее и потрескавшееся покрытие электрических клемм позволяло предполагать, что сделали его в 60-е годы прошлого века.
Никакого руководства не было, а вместо него оказался толстый лист чертежной бумаги, на котором кто-то цветными карандашами изобразил схему включения прибора: для разогрева металлического катода и выброса электронов, ускоряющихся значительно большим напряжения на аноде, подавалось напряжением 6,3 В. Третий источник тока должен был питать катушки Гельмгольца. Я подсоединил провода к моему источнику питания и выключил свет.
Зрелище было жутковатым. По мере того как я увеличивал напряжение на аноде, вокруг катода собиралось зеленоватое облако в форме яблока, оно росло и наполнялось светом до тех пор, пока при 160 В тонкий как волосок синий луч «выстрелил» из самой сердцевины и ударил в верхнюю часть стекла. Настоящий джинн в бутылке! Каким страшным это все должно было казаться Круксу и другим пионерам электронно-лучевых приборов! Некоторым чудилось, что они видят эктоплазму, ту самую субстанцию, появляющуюся из отверстий в теле медиума во время спиритического сеанса. Поднеся стержневой магнит к стеклу, я заставил джинна искривиться. Черный полюс отклонял пучок на меня, а красный — отталкивал.
Теперь пришла пора подать напряжение на катушки. Я стал потихоньку вертеть ручку, и при напряжении 3,5 В и токе 0,76 А пучок закрутился по часовой стрелке и образовал сияющий круг внутри трубки. Если анод старался толкать электроны строго вверх, то магнитный ветер сносил их в сторону — две силы встретились под прямым углом и, как понял Томсон, результат этой борьбы зависит от массы частиц и их заряда. Эксперимент не мог ему дать ни одной из этих величин (потому что легкие, слабо заряженные частицы будут вести себя так же, как и тяжелые частицы с большим зарядом). Но соотношение величин определить можно.
Монография впервые в отечественной и зарубежной историографии представляет в системном и обобщенном виде историю изучения восточных языков в русской императорской армии. В работе на основе широкого круга архивных документов, многие из которых впервые вводятся в научный оборот, рассматриваются вопросы эволюции системы военно-востоковедного образования в России, реконструируется история военно-учебных заведений лингвистического профиля, их учебная и научная деятельность. Значительное место в работе отводится деятельности выпускников военно-востоковедных учебных заведений, их вкладу в развитие в России общего и военного востоковедения.
Как цикады выживают при температуре до +46 °С? Знают ли колибри, пускаясь в путь через воды Мексиканского залива, что им предстоит провести в полете без посадки около 17 часов? Почему ветви некоторых деревьев перестают удлиняться к середине июня, хотя впереди еще почти три месяца лета, но лозы и побеги на пнях продолжают интенсивно расти? Известный американский натуралист Бернд Хайнрих описывает сложные механизмы взаимодействия животных и растений с окружающей средой и различные стратегии их поведения в летний период.
Немногие культуры древности вызывают столько же интереса, как культура викингов. Всего за три столетия, примерно с 750 по 1050 год, народы Скандинавии преобразили северный мир, и последствия этого ощущаются до сих пор. Викинги изменили политическую и культурную карту Европы, придали новую форму торговле, экономике, поселениям и конфликтам, распространив их от Восточного побережья Америки до азиатских степей. Кроме агрессии, набегов и грабежей скандинавы приносили землям, которые открывали, и народам, с которыми сталкивались, новые идеи, технологии, убеждения и обычаи.
Голуби, белки, жуки, одуванчики – на первый взгляд городские флора и фауна довольно скучны. Но чтобы природа заиграла новыми красками, не обязательно идти в зоопарк или включать телевизор. Надо просто знать, куда смотреть и чему удивляться. В этой книге нидерландский эволюционный биолог Менно Схилтхёйзен собрал поразительные примеры того, как от жизни в городе меняются даже самые обычные животные и растения. В формате PDF A4 сохранен издательский макет.
«Представляемая мною в 1848 г., на суд читателей, книга начата лет за двадцать пред сим и окончена в 1830 году. В 1835 году, была она процензирована и готовилась к печати, В продолжение столь долгого времени, многие из глав ее напечатаны были в разных журналах и альманахах: в «Литературной Газете» Барона Дельвига, в «Современнике», в «Утренней Заре», и в других литературных сборниках. Самая рукопись читана была многими литераторами. В разных журналах и книгах встречались о ней отзывы частию благосклонные, частию нет…».
Бой 28 июля 1904 г. — один из малоисследованых и интересных боев паровых броненосных эскадр. Сражение в Желтом море (японское название боя 28.07.1904 г.) стало первым масштабным столкновением двух противоборствующих флотов в войне между Россией и Японией в 1904–05 гг. Этот бой стал решающим в судьбе русской 1-й эскадры флота Тихого океана. Бой 28.07.1904 г. принес новый для XX века боевой опыт планирования, проведения морских операций в эпоху брони и пара, управления разнородными силами флота; боевого использования нарезной казнозарядной артиллерии с бездымным порохом и торпедного оружия.