Дарвинизм в XX веке - [49]
Оказалось, что в гене S произошла точковая мутация, вызвавшая в строго определенном положении замену глутаминовой кислоты на другую аминокислоту — валин. В результате гемоглобин для малярийного плазмодия стал ядовитым.
Отсюда видно, что отбор исходит из интересов всей популяции и как бы равнодушен к судьбам отдельных особей. В результате вырабатывается механизм, при котором гомозиготы SS гибнут (в данном случае до миллиона детей ежегодно), но в целом популяция приспособлена к среде, где важным фактором является возбудитель малярии, из-за мутации, летальной для значительной ее части[10].
Кроме того, разные мутации по-разному изменяют фенотип. Сравним мутацию — с ампутацией: ампутация головы летальна, ампутация конечности понижает жизнеспособности организма. Но ведь возможны ампутация пальца, мозоли, злокачественной опухоли; они могут быть не только нейтральными, но и полезными.
В классической генетике чаще всего использовались для анализа мутации, довольно резко изменяющие строение фенотипа. Такие изменения генома действительно существенно снижали жизнеспособность фенотипа — вплоть до нуля. Анализ аминокислотных замен в белках открыл перед генетиками всю широту мутационных изменений. Прежде всего вырожденность кода приводит к тому, что далеко не каждая мутация изменяет аминокислотную последовательность. Если же замена произошла, например, не в функциональной части молекулы фермента и не изменила существенно ее структуры, свойства белка меняются очень незначительно. Эти-то ничтожные изменения, приводящие к сдвигу оптимальной зоны действия фермента, снижению или повышению его активности, большей или меньшей избирательности субстрата, и являются основным материалом для эволюционного процесса. Так по-новому осмысливается положение Дарвина: «Природа не делает скачков». Хотя каждая мутация — скачкообразное, качественное изменение генома (нуклеотид в триплете может быть либо тем, либо другим — середины нет), подавляющее большинство этих скачков лишь незначительно изменяют фенотип и создается неверное представление о постепенных количественных изменениях. Причина слабого воздействия большинства мутаций на фенотип — сохранение при мутации полярности аминокислот.
Аминокислоты, входящие в состав белков, различаются по химическим свойствам на полярные и неполярные. Полярные аминокислоты обладают группами с резко выраженным сродством к молекулам воды, они как бы смачиваются ею. Неполярные, наоборот, слипаются друг с другом. Поэтому произошедшая в результате мутации замена полярной аминокислоты на неполярную (и наоборот) резко изменяет всю конфигурацию белковой молекулы, ее вторичную структуру. Такие мутации часто бывают летальными (в гене S и произошла подобная замена полярной глутаминовой кислоты на неполярный валин). Однако, как показывают расчеты, генетический код построен так, что точковая мутация в большинстве случаев не изменяет полярности аминокислоты. Поэтому конфигурация белковой молекулы меняется не так значительно. В настоящее время большинство исследователей полагает, что на одну крупную мутацию, существенно изменяющую фенотип, а потому, возможно, летальную, приходятся сотни, а то и тысячи для нас практически незаметных. Мы можем их обнаружить, лишь определив аминокислотную последовательность в белке мутантной формы.
У ряда исследователей сложилось впечатление, что эволюция идет путем накопления безразличных (нейтральных, неприспособительных) замен белков в аминокислотах (так называемая «недарвиновская эволюция»). Нетрудно заметить, что ошибка эта довольно стара и представляет не что иное, как перенос идей Райта о нейтральных признаках на молекулярный уровень. Коэффициент отбора для таких аллелей может быть ничтожно мал; тогда адаптивность мутации может стать очевидной лишь через сотни поколений. Мы не способны ее заметить, как не замечаем течение ледника. И опять возникает вопрос — ведь так можно объяснить дивергенцию, обособление видов, но как в процессе эволюции без отбора может возникнуть целесообразность?
Молекулярная биология не только необычайно расширила наши знания о природе генов и мутаций, но и пролила свет на природу неядерной (цитоплазматической) наследственности. Существование в цитоплазме клеток каких-либо внеядерных факторов, влияющих на признаки организмов, ламаркистами считалось (и считается до сих пор) одним из самых важных доводов против дарвинизма. Я, впрочем, никогда не мог оценить силы подобного довода. В самом деле: есть гены, локализованные в хромосомах ядра, и есть гены цитоплазматические, рассеянные в цитоплазме клетки. Чем это может помочь гипотезе о наследовании приобретаемых свойств? Даже классическую, домолекулярную генетику существование этого факта опровергнуть не может — сами генетики (К. Корренс — один из первооткрывателей менделизма и Э. Бауэр) открыли явление цитоплазматической наследственности и основательно его изучали.
Явление цитоплазматической наследственности лучше всего прослеживается на так называемых реципрокных — обратных — скрещиваниях. Сперматозоид представляет практически голое ядро с очень небольшим количеством цитоплазмы. Наоборот, яйцеклетка цитоплазмой богата. Поэтому, если в плазме есть какие-либо наследственные факторы, они окажут действие на признаки гибрида с материнской стороны. Цитоплазматически наследуемый признак отцом не передается; отсюда вероятно, что, если мы возьмем отца из породы с изучаемым признаком и этот признак не проявится в потомстве, вызывающий его фактор находится в цитоплазме.
Современная биология – это совокупность научных дисциплин, с разных сторон и на разных уровнях изучающих все многообразие живой материи. Можно ли, опираясь на сумму накопленных знаний, построить некую систему теоретических положений, необходимых для понимания специфических отличий живого от неживого? Можно, считает автор, и в доступной форме излагает основные принципы, которые играют в биологии такую же роль, какую в геометрии – аксиомы.Для широкого круга читателей.
От редакции журнала «Человек»: Борис Михайлович Медников был одним из первых авторов нашего журнала. Тогда его чрезвычайно занимала идея схожести биологической и культурной эволюции человечества, и он написал для нас первую статью на эту тему «Гены и мемы — субъекты эволюции» (№4,1990), которая до сих помнится многим читателям. Потом он увлекся и с головой погрузился в проблемы СПИДа, казалось, отойдя от любимой темы. Но, как выяснилось недавно, в 1991—1992 годах он начал писать книгу, три главы которой, готовые к печати, сохранились в его архиве.
Все занимаются исследованиями мозга. Едва ли найдется научная дисциплина, которая откажется «модернизировать» себя, добавив «нейро» к названию. Детища этого стремления – нейротеология, нейроэкономика, нейроправо и нейроэстетика. Жертва его – наш мир, который пытаются представить в категориях из области исследований мозга. Я – это мой мозг? Или только биоавтомат? Эта книга ставит под сомнение значимость нейроисследований. Нить доказательств автора ведет к постулату: дидактический апломб нейронаук непропорционален их фактической познавательной способности; громкие прогнозы и теории балансируют на весьма тонкой основе надежных эмпирических данных, и только разрастающаяся масса вольно истрактованных результатов не дает им рухнуть.
В этой потрясающей, поэтической и жизнеутверждающей книге финалистка Национальной книжной премии США Сай Монтгомери рассказывает о 13 животных – ее друзьях, сыгравших важную роль в ее жизни. Каждое животное замечательно, и совершенно по-своему. Просто находиться рядом с любым животным – это уже урок, потому что все они умеют что-то, чего не могут люди. Общение с созданиями, принадлежащими к другим видам, удивительным образом обогащает душу. Никто не знает этого лучше, чем автор, натуралист и искатель приключений Сай Монтгомери.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Билл Шутт – бывший профессор биологии в LIU-Post и научный сотрудник в Американском музее естествознания. Мир кровожадных животных, который открывает Билл Шутт, отправит вас в омерзительно-увлекательное путешествие, где вампировые летучие мыши, пиявки и прочие кровососущие станут главными героями почти детективных историй. Это одновременно самая пугающая и забавная книга о биологии и истории. Вряд ли вы где-нибудь еще прочтете такой подробный рассказ о жизни кровожадных животных и насекомых.
Кожа человека – удивительный орган, один из немногих, которые мы можем увидеть и тем более потрогать. Но несмотря на кажущуюся доступность, знаем мы о ней еще очень мало. Например, каким было отношение к коже в XVIII, XIX, XX веках и какое оно в современном мире, почему у одних народов принято прятать кожу под слоями одежды, а другие носят лишь набедренные повязки. Вместе с Монти Лиманом, врачом-дерматологом, вы погрузитесь в мир кожи, узнаете ее устройство и скрытые физиологические процессы, разберетесь в механизмах старения и волшебстве касаний, познакомитесь с населением кожи – микробиомом, узнаете о заболеваниях и способах лечения, а также разберетесь, как кожа связана с нашим мозгом и сознанием, узнаете больше о ее социальной и духовной стороне.
Академик АМН СССР рассказывает об иммунитете, силах, которые защищают наш организм от микробов, вирусов, раковых заболеваний, хранят неповторимую индивидуальность нашего телесного 'я', говорит о болезнях, возникающих при нарушении иммунитета и мерах борьбы с ними, а также об использовании клеток иммунной системы в биотехнологии (производстве лечебных и диагностических препаратов, сверхчувствительных реагентов), об использовании 'раковых клеток в мирных целях'. Издание рассчитано на самые широкие круги читателей.