Дарвинизм в XX веке - [18]
Один из видов американской саламандры — амбистома латерале (близкий вид — тигровая хорошо известен любителям живой природы под названием аксолотля) в одних и тех же водоемах может быть представлен диплоидной и триплоидной расой. Триплоидные амазонки, более крупные и сильные, чем обычная диплоидная форма, могли бы ее вытеснить и вымереть вслед за ней сами, так как их икринки стимулируются к развитию диплоидными самцами. Однако баланс между формами поддерживается тем, что у триплоидов плодовитость значительно меньше, да и развитие икринки затягивается на более длительный срок.
В последнее время снова возник спор о роли полиплоидизации в эволюции животных, особенно тех, у которых пол не однозначно определяется хромосомным набором, а зависит от соотношения в организме женских и мужских половых гормонов. Особенно стремятся доказать ее широкую распространенность в природе сторонники так называемого «мгновенного видообразования», когда в течение одного поколения возникает новый вид, не смешивающийся с материнской формой. Но на пути подобных построений неизбежно встает парадокс Каина. Растения обходят его, так как способны к самоопылению и вегетативному размножению. Но как быть с животными?
И все же есть факты, свидетельствующие о возможном удвоении генома у двуполых животных. Рыжий таракан-пруссак имеет 24 хромосомы, а крупный черный — 48. У карпа 104 хромосомы, а у большинства других карповых — 52. Лососевые рыбы, как это установлено достаточно твердо, — тетраплоиды. Однако многие подобные случаи оказались проявлением так называемой ложной полиплоидии, обусловленной расщеплением и слиянием хромосом и рядом других факторов. В опыте полиплоидия животных возможна. Непрямым путем — через партеногенез и межвидовую гибридизацию Б. Л. Астаурову и его сотрудникам удалось сконструировать аллотетраплоид — гибрид домашнего и дикого тутового шелкопряда. Я умышленно говорю — сконструировать, потому что, когда читаешь описание этого замечательного опыта, именно это слово приходит на ум. Аллотетраплоид Астаурова, как и рафанобрассика Карпеченко — форма, генетически изолированная от обоих родительских видов. Для того чтобы ее получить, потребовалось:
1) научиться получать партеногенетическое потомство с диплоидным набором хромосом (здесь индуктором развития яйцеклетки выступает не сперма другого вида, а нагрев до 48 °C в течение 18 минут);
2) получить тетраплоидных самок, размножающихся партеногенетически (число хромосом 4n = 112);
3) скрещиванием тетраплоидных самок с обычными диплоидными самцами получить триплоидные формы шелкопряда;
4) из триплоидных форм получить гексаплоидные, с шестью хромосомными наборами;
5) гексаплоидных самок домашнего шелкопряда скрестить с диплоидными самцами дикого. Потомство будет иметь соответственно — три набора хромосом от домашнего и один — от дикого шелкопряда, то есть будет аллотетраплоидным;
6) путем отбора из поколения в поколение повысить плодовитость гибридов.
Значение подобных опытов трудно переоценить, ибо они закладывают фундамент новой отрасли селекции и генетики — получению плодовитых гибридов между разными видами животных. Однако вряд ли виды часто возникали в природе подобным путем, так как арсенал средств природы несравненно беднее, чем у современного экспериментатора. У природы другой козырь — время, в течение которого самые радикальные перестройки генома могут стать в принципе не невозможными…
Теперь остановимся коротко на менее решительных перестройках генома — частичном удвоении числа хромосом, соединении двух хромосом в одну или, наоборот, разделении их. Такие случаи встречаются гораздо чаще, чем авто- и аллополиплоидия.
Долгое время среди генетиков бытовало убеждение, что число хромосом — абсолютно стабильный видовой показатель. Однако оно оказалось не совсем верным. Описаны случаи, когда число хромосом изменяется или путем распада одной хромосомы на две, или путем слияния двух негомологичных (не образующих пары при мейозе) в одну. Возможна и полисомия — удвоение не всего хромосомного набора, а лишь части хромосом. Такие межхромосомные перестройки весьма важны для эволюционного процесса. Увеличение числа хромосом приводит к резкому увеличению комбинаторной изменчивости. Наоборот, слияние их снижает изменчивость, следствием чего является замедление образования форм, стабилизация вида.
В последние годы широко распространено мнение, что первичные, примитивные виды имеют геном, состоящий из многих мелких хромосом, а эволюционный процесс идет путем слияния их в крупные. Возможно, во многих случаях это так — и все-таки мне кажется, что здесь уместно вспомнить гетевское — «теория мертва, лишь древо жизни вечно зеленеет». Эволюцию нельзя загонять в узкие рамки одной тенденции. Есть прямые свидетельства того, что изменения генома шли в разных направлениях, многократно комбинируясь. Примером могут служить олени. До наших дней сохранились мелкие примитивные тропические оленьки — мунтжаки; в той же группе есть и значительно эволюционно подвинутые виды. Оказывается, у большинства видов оленей 50–70 хромосом, у примитивного оленя Давида, как у лани и благородного оленя, 2n = 62, у одного из видов мунтжаков (мунтжак Ривса) — 46, а у другого — только 6, как у комара, наименьшее известное для млекопитающих хромосомное число! Комментарии, как говорится, излишни.
Современная биология – это совокупность научных дисциплин, с разных сторон и на разных уровнях изучающих все многообразие живой материи. Можно ли, опираясь на сумму накопленных знаний, построить некую систему теоретических положений, необходимых для понимания специфических отличий живого от неживого? Можно, считает автор, и в доступной форме излагает основные принципы, которые играют в биологии такую же роль, какую в геометрии – аксиомы.Для широкого круга читателей.
От редакции журнала «Человек»: Борис Михайлович Медников был одним из первых авторов нашего журнала. Тогда его чрезвычайно занимала идея схожести биологической и культурной эволюции человечества, и он написал для нас первую статью на эту тему «Гены и мемы — субъекты эволюции» (№4,1990), которая до сих помнится многим читателям. Потом он увлекся и с головой погрузился в проблемы СПИДа, казалось, отойдя от любимой темы. Но, как выяснилось недавно, в 1991—1992 годах он начал писать книгу, три главы которой, готовые к печати, сохранились в его архиве.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Главное внимание автор уделил людям – своим героям, дальневосточным рыбакам, живущим и работающим на этих «физически и морально устаревших» железяках и успешно кормящих страну. Автор провёл с ними в море более половины этого самого ПОЛУВЕКА.Книга будет полезна курсантам училищ, студентам и преподавателям вузов, научным сотрудникам и всем, кто специализируется в областях, связанных с рыбным хозяйством.
Александр Иванович Опарин — член-корреспондент Академии наук СССР, один из ведущих биохимиков Советского Союза.Основные экспериментальные работы А. И. Опарина посвящены изучению обмена веществ у растений.А. И. Опарин — основатель особой отрасли знания: технической биохимии.Происхождение жизни — это та проблема, над которой А. И. Опарин работает уже в течение 25 лет и в области которой он является признанным авторитетом не только у нас, но и за рубежом. Его перу принадлежит ряд книг и популярных брошюр по этому вопросу, многие из них переведены на иностранные языки.А.
Книга известного ученого состоит из коротких новелл, рассказывающих о разнообразной и многоликой природе пустыни. Внимание автора привлекают главным образом мелкие обитатели пустынь Средней Азии: муравьи, пауки, клещи, гусеницы и бабочки, жуки, пчелы и осы. Мир этих существ пока еще мало известен, а потому наблюдения за ним не только интересны, но и весьма полезны.
В книге рассказывается о роли Солнца и солнечного света в возникновении и развитии жизни на Земле, в процессах фотосинтеза. Анализируются физическая природа и особенности действия на организм видимого света, ультрафиолетовых и инфракрасных лучей; рассматривается влияние физических процессов, протекающих в недрах Солнца, на ритм разнообразных процессов в биосфере. Особое внимание автор уделяет изучению воздействия солнечных лучей на организм человека.Утверждено к печати редколлегией серии научно-популярных изданий Академии наук СССР.