Дарвинизм в XX веке - [11]
Группа Моргана показала, что, выстроившись попарно, гомологичные хромосомы при мейозе могут обменяться частями. Это явление было названо кроссинговером (перекрестом). Оказалось, что цитологи уже давно наблюдали кроссинговер в клетках многих организмов.
Схема кроссинговера.
Анализ кроссинговера показал, что гены в хромосомах расположены линейно в одномерной последовательности, как буквы в строке. Это позволило построить хромосомные карты генных локусов (локус — по-латыни просто место, в генетике — место, где расположен в хромосоме ген. Каждый локус может быть занят аллелем — формой какого-либо гена — например, аллелем желтой или зеленой окраски семядолей гороха). Чем дальше в хромосоме отстоят друг от друга локусы, тем больше вероятность того, что они расстанутся при кроссинговере.
Для эволюции кроссинговер имеет первостепенное значение. Возьмем для примера менделевский горох. Допустим, что ген желтой окраски горошин и ген, обуславливающий развитие длинных корней, находятся в одной хромосоме. Не будь кроссинговера, получение гороха с зелеными горошинами и длинными корнями было бы невозможным. Кроссинговер делает сцепление между генами неабсолютным: в результате его оба признака могут оказаться в одной хромосоме. Еще более важен для возникновения новых форм эффект неравного кроссинговера, открытый в 1925 году учеником Моргана Стертевантом. Стертевант изучал ген, вызывающий появление у дрозофилы полосковидных глаз, и установил, что возможны случаи не абсолютно точного обмена частями хромосом. После такого неравного кроссинговера в одной хромосоме оказывается два одинаковых локуса, а в другой — ни одного. Один и тот же локус, представленный двумя аллелями, становится двумя самостоятельными одноаллельными локусами. У многих организмов одинаковые гены многократно дублированы: в хромосоме имеется не один локус, а целая цепочка их. В таких случаях неравный кроссинговер — явление весьма частое: одна хромосома получает львиную долю локусов, другая — меньше их число. Идет как бы переселение генов из одной гомологичной хромосомы в другую. Однако возможен и обратный процесс выравнивания числа локусов: кроссинговер в этом случае восстанавливает равенство.
Первые успехи генетики позволили понять механизм комбинаторной, или комбинативной, изменчивости, имеющей огромное значение в эволюции. При мейозе отцовские и материнские хромосомы, образующие пары, расходятся по гаметам случайно. Каково же число возможных сочетаний пар хромосом? Как показывает математика, оно равняется 2 в степени, равной числу пар гомологичных хромосом. У кролика, например, оно равно 222 = 4 385 000, у дрозофилы 24 = 16. Остается еще раз восхвалить скупость попечителей Колумбийского университета. Используй Морган кроликов вместо дрозофилы, он мог бы просто утонуть в море генетических рекомбинаций, и группы сцепления были бы открыты позже.
Если мы учтем перетасовывающую деятельность кроссинговера, нам станет ясно: запасы комбинаторной изменчивости практически неисчерпаемы. Поэтому в природе не может быть двух размножающихся половым путем организмов с идентичными наборами генов, нет двух одинаковых особей. Исключение (подтверждающее правило!) — однояйцовые близнецы, черенки с одного куста, бактерии, полученные в потомстве от одной клетки.
Представим некий организм, у которого в хромосомах всего 1000 локусов (на деле даже у бактерий эта величина больше). Если каждый локус представлен серией из 10 аллелей, число возможных сочетании из них — 10>1000 (как указал английский генетик С. Райт, эта величина неизмеримо больше числа электронов во всей Вселенной). Разумеется, львиная доля подобных сочетаний была бы нежизнеспособной при любых изменениях среды. Но и того, что остается, более чем достаточно, чтобы служить «сырьем» для эволюционного процесса, поставляя отбору неисчерпаемый материал в течение практически бесконечного времени.
Генетические карты, построенные морганистами, выглядели на первый взгляд странно. Гены, определяющие развитие самых различных признаков, мирно уживались в хромосоме рядом, как бусинки на нитке. Могло сложиться впечатление (а у некоторых оно и сложилось), будто организм — не что иное, как мозаика признаков, каждый из которых независим от других и определяется одним геном.
Это наивное представление было быстро опровергнуто работами известного шведского генетика Г. Нильсон-Эле еще в 1908 году. Изучая гибриды между различными расами пшениц, Нильсон-Эле установил, что многие признаки, например окраска зерен, определяются не одним, а многими генами. В зависимости от сочетания таких полимерных генов признак может иметь разную интенсивность. Полимерия генов распространена чрезвычайно широко, что вполне объяснимо. Понятие «признак» весьма условно. Чем сложнее та особенность структуры, которую мы называем этим расплывчатым термином, тем большее количество генов ответственно за ее проявление.
Окраска каждого лепестка мака, например, контролируется по меньшей мере десятью генами. Не менее сложен генный контроль над окраской шерсти млекопитающих. Пигментация кожи у человека также полимерный признак, поэтому у супружеской пары — негра и белой женщины могут рождаться дети-мулаты с самыми разнообразными вариациями цвета кожи: от черной до почти белой.
Современная биология – это совокупность научных дисциплин, с разных сторон и на разных уровнях изучающих все многообразие живой материи. Можно ли, опираясь на сумму накопленных знаний, построить некую систему теоретических положений, необходимых для понимания специфических отличий живого от неживого? Можно, считает автор, и в доступной форме излагает основные принципы, которые играют в биологии такую же роль, какую в геометрии – аксиомы.Для широкого круга читателей.
От редакции журнала «Человек»: Борис Михайлович Медников был одним из первых авторов нашего журнала. Тогда его чрезвычайно занимала идея схожести биологической и культурной эволюции человечества, и он написал для нас первую статью на эту тему «Гены и мемы — субъекты эволюции» (№4,1990), которая до сих помнится многим читателям. Потом он увлекся и с головой погрузился в проблемы СПИДа, казалось, отойдя от любимой темы. Но, как выяснилось недавно, в 1991—1992 годах он начал писать книгу, три главы которой, готовые к печати, сохранились в его архиве.
Почему вы сейчас читаете эти строки? Можно предположить, что вам показалось интересным название книги или просто понравилась обложка. Но не все так однозначно. Сотни решений, которые мы принимаем каждый день, на самом деле осуществляет наш мозг, следуя только ему известным алгоритмам. С древности людей интересовало устройство нашего разума. И во все времена непостижимость мозга провоцировала рождение мифов и суеверий. Однако и сегодня, несмотря на все технические достижения XXI века, ученые не готовы признать, что приблизились к пониманию центрального органа нервной системы.
Мы легко узнаем близкого человека в толпе незнакомцев, и эта способность кажется элементарной. Но как на самом деле работает зрение? Как мы различаем лица, распознаем знакомые объекты и ориентируемся на местности? Как наш мозг перерабатывает и осмысляет визуальную информацию – пятна света, контуры и цвета? Гарвардский нейробиолог Ричард Маслэнд посвятил свою книгу зрению – от сетчатки глаза до зрительных центров в височной коре мозга. Он рассказывает обо всех аспектах зрения, устройстве наших глаз, процессах восприятия и осмысления сигналов.
Шарон Моалем – известный канадо-американский генетик, врач, эксперт в области редких генетических заболеваний, открывший антибиотик нового типа, который помогает в борьбе со сверхустойчивыми инфекциями. Популяризатор науки. Читает лекции для широкой аудитории, принимает участие в теле- и радиопрограммах. В «Лучшей половине» автор выдвигает и убедительно доказывает любопытную теорию о том, что генетические женщины превосходят мужчин уже по самому праву рождения, так как обладают двумя Х-хромосомами. Именно наличие двух X-хромосом позволяет женщинам жить дольше и лучше справляться со многими заболеваниями, включая и COVID-19. В формате a4.pdf сохранен издательский макет.
Книга Роба Десалла обобщает новейшие результаты в сфере нейробиологических исследований человеческих чувств. В ней рассказывается не только о том, как мы видим, слышим, осязаем, чувствуем вкус и запах, поддерживаем равновесие, ощущаем боль, но и о том, как все это формирует наше восприятие мира, в том числе с эстетической и художественной точек зрения, помогая создавать произведения искусства. Затронув эволюционный аспект формирования восприятия и сознания, автор переходит к освещению таких тем, как пределы диапазона чувств у человека (сверхчувствительность и пониженная чувствительность), синестезия, полушарная специализация, болезни и аномалии, вызванные травмами, галлюцинации, и многих других.
В книге рассказывается о роли Солнца и солнечного света в возникновении и развитии жизни на Земле, в процессах фотосинтеза. Анализируются физическая природа и особенности действия на организм видимого света, ультрафиолетовых и инфракрасных лучей; рассматривается влияние физических процессов, протекающих в недрах Солнца, на ритм разнообразных процессов в биосфере. Особое внимание автор уделяет изучению воздействия солнечных лучей на организм человека.Утверждено к печати редколлегией серии научно-популярных изданий Академии наук СССР.
Неослабевающий интерес к таинственным обитателям океана, таким, как Несси из шотландского озера Лох-Несс и «сестры Несси», сообщения о которых время от времени поступают из Канады и Африки, Якутии и Швеции, побудил автора написать эту книгу, из которой читатель узнает о сенсациях подлинных и мнимых, о том, что освоение океанских вод сулит еще немало открытий.