Цифровая стеганография - [18]

Шрифт
Интервал

Пусть V - исходное изображение, W - водяной знак законного собственника. Тогда защищенное изображение

. Нарушитель объявляет произвольную последовательность бит своим водяным знаком и вычитает ее из защищенного изображения, в результате чего получает ложный оригинал
. Теперь если выполняется равенство
, то цель нарушителя достигнута. ЦВЗ называется в этом случае обратимым. Невозможно определить, что является оригиналом:
или
и, следовательно, кто является собственником контента. Далее мы, следуя [14], дадим определения обратимости и необратимости систем ЦВЗ, а в пункте 2.4 рассмотрим подходы к решению проблемы прав собственника.

В работе [14] дано два определения необратимости: ослабленное и сильное. При этом используются следующие обозначения:

-- процедура встраивания ЦВЗ;

-

(или
) — процедура извлечения ЦВЗ;

-

- масштабирующий коэффициент;

-

- бинарный признак подобия двух сигналов: равен 1, если коэффициент взаимной корреляции больше некоторого порога
; в противном случае — равен 0.

Первое определение необратимости следующее.

Стегоалгоритм является (строго) обратимым, если для любого существует отображение такое, что и . При этом вычислительно осуществимо, принадлежит к классу допустимых ЦВЗ, истинное и ложное изображения визуально сходны и

. Иначе (слабо) необратим.

В этом определении требование, чтобы

накладывает слишком сильное ограничение. В самом деле, даже
может не выполняться в силу различного рода искажений . С другой стороны, это требование слишком слабо для определения обратимости. Поэтому, в работе [14] оно заменено на требование, чтобы , где .

Второе определение необратимости следующее.

Стегоалгоритм является (слабо) обратимым, если для любого

существует отображение такое, что
и
. При этом
вычислительно осуществимо,
принадлежит к классу допустимых ЦВЗ,
,
и
. Иначе
(строго) необратим.

В настоящее время известны различные решения проблемы права собственности. Они представлены в пункте 2.3.

В работе [12] описаны атаки, использующие наличие стегокодера. Подобная атака является одной из наиболее опасных. Одним из возможных сценариев, когда ее опасность существует, является следующий. Пусть пользователю разрешено сделать одну копию с оригинала, но не разрешено делать копии с копий. Записывающее устройство должно изменить ЦВЗ с «разрешена копия» на «копирование не разрешено». В этом случае атакующий имеет доступ к сообщению до и после вложения ЦВЗ. Значит, он может вычислить разность между исходным и модифицированным сообщением. Эта разность равна . Далее исходное изображение предыскажается: из него вычитается

. После осуществления копирования будет записано
, что очень близко к исходному изображению
. Эта близость объясняется тем, что ЦВЗ должны быть робастны к добавлению аддитивного шума. Следовательно,
. В случае данной атаки в качестве шума выступает стегосообщение и
.

В работе [3] и др. исследуются атаки на системы защиты от копирования. В ряде случаев гораздо проще не удалять ЦВЗ, а помешать его использованию по назначению. Например, возможно внедрение дополнительных ЦВЗ так, что становится неясно, какой из них идентифицирует истинного собственника контента.

Другой известной атакой на протокол использования ЦВЗ является атака копирования. Эта атака заключается в оценивании ЦВЗ в защищенном изображении и внедрении оцененного ЦВЗ в другие изображения. Целью может являться, например, противодействие системе имитозащиты или аутентификации.

Одна из слабостей стегосистемы, применяемой для защиты от копирования, является то, что детектор способен обнаружить ЦВЗ только когда видеосигнал визуально приемлем. Однако можно подвергнуть сигнал скремблированию, получить шумоподобный сигнал, затем без помех незаконно скопировать его. В видеоплейер в этом случае встраивается дескремблер, который и восстанавливает незаконно сделанную копию. Аппаратная реализация скремблера и дескремблера весьма проста и иногда используется для защиты, например, программ кабельного телевидения. Возможной защитой против такого подхода является разрешения копирования только определенного формата данных.

2.3. Методы противодействия атакам на системы ЦВЗ

В простейших стегосистемах ЦВЗ при встраивании используется псевдослучайная последовательность, являющаяся реализацией белого гауссовского шума и не учитывающая свойства контейнера. Такие системы практически неустойчивы к большинству рассмотренных выше атак. Для повышения робастности стегосистем можно предложить ряд улучшений.

В робастной стегосистеме необходим правильный выбор параметров псевдослучайной последовательности. Известно, что при этом системы с расширением спектра могут быть весьма робастными по отношению к атакам типа добавления шума, сжатия и т. п. Так считается, что ЦВЗ должен обнаруживаться при достаточно сильной низкочастотной фильтрации (7х7 фильтр с прямоугольной характеристикой). Следовательно, база сигнала должна быть велика, что снижает пропускную способность стегоканала. Кроме того, используемая в качестве ключа ПСП должна быть криптографически безопасной.

Атака «сговора» и возможные методы защиты от нее рассмотрена в работе [16]. Причиной нестойкости систем ЦВЗ с расширением спектра к подобным атакам объясняется тем, что используемая для вложения последовательность обычно имеет нулевое среднее. После усреднения по достаточно большому количеству реализаций ЦВЗ удаляется. Известен специальный метод построения водяного знака, направленный против подобной атаки. При этом коды разрабатываются таким образом, чтобы при любом усреднении всегда оставалась не равная нулю часть последовательности (статическая компонента). Более того, по ней возможно восстановление остальной части последовательности (динамическая компонента). Недостатком предложенных кодов является то, что их длина увеличивается экспоненциально с ростом числа распространяемых защищенных копий. Возможным выходом из этого положения является применение иерархического кодирования, то есть назначения кодов для группы пользователей. Некоторые аналогии здесь имеются с системами сотовой связи с кодовым разделением пользователей (CDMA).


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.