Чувства: Нейробиология сенсорного восприятия - [21]

Шрифт
Интервал

Диапазон количества вкусовых рецепторов GRN в геномах насекомых впечатляет: от восьми у вшей (Pediculus) до более чем двухсот у малого мучного хрущака (Tribolium). Количество генов обонятельных рецепторов в геномах насекомых положительно, хотя и в малой степени, коррелирует с генами вкусовых – «богатые становятся богаче» и в отношении рецепторов, и в отношении точности этих двух чувств. Насекомые, добывающие пищу из одного или нескольких источников, должны иметь меньше генов вкусовых рецепторов: им нужно точно знать, едят ли они то, что следует. А насекомые, которые могут забыть про диету и позволить себе разные гастрономические безрассудства (также известные как многоядные насекомые, или полифаги), более взыскательны в отношении вкуса. И действительно, геномы некоторых из них содержат пару сотен генов вкусовых рецепторов. Но в целом корреляция довольно мала, и требуется гораздо больше исследований о том, как насекомые различают вкус и как это связано с эволюцией их рациона.

Диапазон генов вкусовых рецепторов у позвоночных так же широк, как и у насекомых. Интереснее всего, пожалуй, рассмотреть у них рецепторы, распознающие горький вкус, именно они особенно показательны для категории «я это ем». Горький вкус, вероятно, наиболее важен для понимания того, чего нужно избегать. Сладкие продукты – довольно легкий выбор: организму наверняка понравятся содержащиеся в них углеводы. А вот с горькой пищей нужно быть более избирательным – нельзя же просто игнорировать все горькое. Это и есть причина широкого спектра вариаций рецепторов горького вкуса (TAS2s) у позвоночных животных. Поскольку травоядные получают не так много питательных веществ из своего рациона (растения в целом менее богаты калориями и другими питательными компонентами, чем мясо), они не могут позволить себе отказаться от потенциально питательных ценных растений. Диян Ли и Цзяньчжи Чжан утверждают, что травоядные должны быть более придирчивы к растениям, с которыми они сталкиваются. Улучшенная система определения разных видов горечи помогает им не отвергать все подряд, но в то же время избегать действительно отвратительных на вкус продуктов (см. вставку 4.1).

4.1 Вкусовые рецепторы

У позвоночных животных широкий спектр вкусовых рецепторов. Рецепторы, реагирующие на горький вкус, как и обонятельные рецепторы, включают в себя некоторое количество псевдогенов и укороченных генов. Оказывается, что в геномах некоторых позвоночных значительная часть генов – это либо псевдогены, либо укороченные версии генов. Количество рецепторов сильно колеблется: у некоторых птиц их три, у морских свинок – до семидесяти (только половина из которых функциональна), у шпорцевых лягушек – около шестидесяти (из которых более пятидесяти функциональных). Проанализировав рацион различных позвоночных и изучив их вкусовые рецепторы, Диян Ли и Цзяньчжи Чжан смогли предположить, что количество генов рецепторов горького вкуса влияет на рацион (или наоборот). Ученые сделали вывод, что у травоядных больше рецепторов TAS2, чем у всеядных и плотоядных, но при этом предупредили, что взаимодействия вкусовых рецепторов с экологией организмов довольно сложны. Похоже, что у позвоночных вкус играет главную роль в идентификации: пригодно нечто для питания или нет.

У кошек довольно много укороченных генов, отвечающих за горький вкус, и много псевдогенов, но они все еще сохраняют способность чувствовать горечь. Этот метод подсчета генов привел к удивительному открытию: у морских млекопитающих (особенно у дельфинов – см. вставку 4.1) нет функциональных генов, отвечающих за горький вкус. Судя по всему, все китообразные массово утратили гены рецепторов горького и сладкого вкусов – именно к такому выводу пришли Пин Фэн и его коллеги, исследовавшие на этот предмет двенадцать видов китов. Потеря этих рецепторных генов означает, что китообразные лишились способности распознавать четыре из пяти основных вкусов – сладкий, умами, кислый и горький. Они все еще могут различать соленый вкус, что предполагает эволюционный механизм развития вкуса этих морских млекопитающих. Однако Фэн и его коллеги утверждают, что китообразные на самом деле не умеют различать вкусы и даже не нуждаются в этой способности. Высокая концентрация соли в морской среде подавляет большинство вкусов, и многие виды китов глотают добычу целиком, совсем не пробуя свою пищу, поэтому остальные четыре вкуса были просто утрачены за ненадобностью. Морская среда неблагоприятна для сохранения генов горького вкуса TAS2. Ламантин оказался единственным млекопитающим в данном исследовании, отличающимся от остальных: он живет в морской среде, у него 75 % горьких вкусовых генов, и все они псевдогенные, то есть неактивные. Но, несмотря на небольшое количество генов TAS2 и вкусовых рецепторов во рту, ламантин все же может чувствовать вкус пищи. Возможно, что этому поспособствовали его растительная диета и тот факт, что он действительно жует еду, – именно перечисленное и не позволило бесследно исчезнуть всей генной семье.

Структура генов вкусовых рецепторов птиц тоже весьма интересна (рис. 4.1). У всех птиц очень мало генов рецепторов TAS2: больше всего у американских воронов и зябликов – семь работающих генов рецепторов горького, а вот у пингвинов их нет совсем. Существует и экологическая корреляция рациона с количеством генов рецепторов TAS2. Используя похожую аргументацию, Ли и Чжан, Кай Ван и Хуабинь Чжао утверждают, что у растительноядных (и некоторых насекомоядных) птиц, как правило, больше генов рецептора TAS2. Пингвины – это другая история, поскольку они тоже были изучены на предмет утраты генов вкусовых рецепторов четырех вкусов, и результаты этого исследования показывают, что пингвины потеряли способность чувствовать сладкий, горький и умами, но при этом сохранили рецепторы, предположительно воспринимающие кислый и соленый вкус. Другие птицы, по-видимому, сохранили почти все эти вкусовые рецепторы: лишь некоторые виды потеряли рецепторы, различающие сладкий вкус. У пингвинов, в отличие от других птиц, нет вкусовых рецепторов на языке, и они проглатывают пищу целиком, избегая необходимости распознавать вкус, отличный от соленого. Стоит отметить, что только появившаяся способность секвенировать полные геномы микробов, животных и растений позволяет делать такие выводы. И в перспективе, по мере секвенирования геномов все большего числа организмов, будет реализовано объединение экологии питания с генетическими и молекулярными аспектами вкуса.


Рекомендуем почитать
Пурпурный. Как один человек изобрел цвет, изменивший мир

Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.


Последняя книга сивиллы?

Предчувствия беды. Предсказания судьбы. Насколько достоверны факты такого рода?.. Не являются ли они результатом случайного совпадения двух независимых явлений? Предсказуемо ли будущее? Способны ли организмы его предвидеть? Какова роль этой способности в жизни? На основе анализа большого количества фактов автор пытается ответить на эти и другие вопросы в предлагаемой книжке.http://znak.traumlibrary.net.


Разгадка близка?

За время развития человеческой цивилизации, несмотря на большое число разгаданных загадок, осталось наверное еще больше неразгаданных. В их число входят и те, что волнуют молодую еще дисциплину — криптозоологию, занимающуюся изучением малоизвестных или вовсе не известных науке животных. У нее есть уже первые успехи, ну а неудачи… От неудач не застрахован ни один исследователь!В брошюре «Разгадка близка?» в занимательной и живой форме рассказывается об увлекательном поиске ученых-криптозоологов — о «снежном человеке» и африканских динозаврах, о живых ископаемых Патагонии и сумчатом тигре, легендарных птицах Рухх «Тысячи и одной ночи».http://znak.traumlibrary.net.


Ванна Архимеда: Краткая мифология науки

Никола Витковски — профессор физики, издатель и редактор, известный во Франции своей популяризаторской деятельностью в научной сфере, написал эту книгу вместе со Свеном Ортоли — физиком и журналистом, освещающим научные вопросы для самых юных читателей.В «Ванне Архимеда» собраны привычные нашему слуху, знакомые со школьных лет эмблемы научного мира, парящего в заоблачных высотах: «Эврика!» Архимеда, яблоко Ньютона, таблица Менделеева, НЛО, Франкенштейн, черные дыры, змея Кекуле, кот Шрёдингера, — про что-то из этого мы читали тысячу раз, про другое приблизительно знаем, откуда взялось, про третье несомненно где-то слыхали, только никак не вспомнить, когда и что именно…Что на самом деле кроется за этими обыденными выражениями? Ортоли и Витковски раскрывают множество интригующих секретов, наглядно демонстрируя, как зарождается научная легенда и насколько тесно связаны две, казалось бы, противоположные крайности — наука и мифология.


Вторжение долгожителей в чужие эпохи. Скрытые возможности человеческого организма

Продление жизни испокон было заветной мечтой человечества. Эта книга-сенсация расскажет вам о скрытых возможностях человеческого организма, позволяющих продлить земную жизнь на несколько сотен лет! Мир стоит на пороге грандиозного, невероятного открытия: секретные опыты российских и западных ученых в области генно-клеточного моделирования дают все более ошеломляющие результаты.Возможно ли столь невероятное продление срока человеческого существования? Что ждет человечество в том случае, если бессмертие из фантастики станет реальностью? Будет ли сверхдолголетие доступно только избранным или станет обыденным фактором нашей жизни? Как изменится наше сознание? И какой станет численность населения планеты Земля? О социальных, демографических и психологических последствиях научного прорыва и расскажет вам это увлекательное исследование.


Меры безопасности на уроках физической культуры

Настоящее пособие знакомит учителей физической культуры с нормами санитарно-гигиенического режима, мерами пожарной безопасности на уроках физкультуры. В нем представлены нормативные акты, формы документов, извлечения из методических указаний, правил и инструкций по охране труда, регламентирующие безопасность проведения физкультурно-оздоровительной, учебной и внеклассной работы в образовательных учреждениях; показан порядок и правила проведения инструктажей по мерам безопасности.Пособие предназначено для студентов, преподавателей, учителей физической культуры и школьников.