Что такое теория относительности - [4]
Обобщая эти наблюдения, мы приходим к выводу: пока какая-то лаборатория движется прямолинейно и равномерно относительно лаборатории покоящейся, в ней невозможно обнаружить отклонения от поведения тел в покоящейся лаборатории. Но как только скорость движущейся лаборатории изменяется по величине (ускорение или замедление) или по направлению (поворот), это тотчас же отражается на поведении находящихся в ней тел.
Покой окончательно потерян
Удивительное свойство прямолинейного и равномерного движения лаборатории не влиять на поведение находящихся в ней тел заставляет нас пересмотреть понятие покоя. Оказывается, что состояние покоя и состояние прямолинейного и равномерного движения ничем не отличаются друг от друга. Лаборатория, которая движется прямолинейно и равномерно относительно покоящейся лаборатории, сама может считаться покоящейся. Это значит, что существует не один — абсолютный — покой, а бесчисленное множество различных «покоев». Существует не одна «покоящаяся» лаборатория, а бесчисленное множество «покоящихся» лабораторий, движущихся относительно друг друга равномерно и прямолинейно с различными скоростями.
Поскольку покой оказывается не абсолютным, а относительным, приходится всегда указывать, относительно какой из бесчисленных движущихся прямолинейно и равномерно друг относительно друга лабораторий мы наблюдаем движение.
Таким образом, нам все-таки не удалось сделать понятие движения абсолютным.
Всегда остается открытым вопрос: относительно какого «покоя» мы наблюдаем движение?
Мы пришли, таким образом, к важнейшему закону природы, обычно называемому принципом относительности движения.
Он гласит: во всех лабораториях, которые движутся друг относительно друга прямолинейно и равномерно, движение тел происходит по одинаковым законам.
Закон инерции
Из принципа относительности движения вытекает, что тело, на которое не действует никакая внешняя сила, может находиться не только в состоянии покоя, но и в состоянии прямолинейного равномерного движения. Это положение в физике называется законом инерции.
Однако в повседневной жизни он как бы завуалирован и непосредственно не проявляется. Ведь по закону инерции тело, находящееся в состоянии прямолинейного равномерного движения, должно — и без воздействия внешних сил — продолжать свое движение без конца. Однако из наблюдений нам известно, что тела, к которым мы силы не прилагаем, останавливаются.
Разгадка заключается в том, что на все тела, наблюдаемые нами, действуют некоторые внешние силы — силы трения. Поэтому условие, необходимое для наблюдения закона инерции — отсутствие внешних сил, действующих на тело, — не выполняется. Но, улучшая условия опыта, уменьшая силы трения, можно приблизиться к идеальным условиям, необходимым для наблюдения закона инерции, доказав, таким образом, правильность этого закона и для движений, наблюдаемых в повседневной жизни.
Открытие принципа относительности движения является одним из величайших открытий. Без него развитие физики было бы невозможно. Этим открытием мы обязаны гению Галилео Галилея, смело выступившего против господствовавшего в те времена и поддерживаемого авторитетом католической церкви учения Аристотеля, согласно которому движение возможно только при наличии силы и без нее должно неминуемо прекратиться. Рядом блестящих опытов Галилей показал, что причиной остановки движущихся тел, наоборот, является сила трения и в отсутствие этой силы приведенное раз в движение тело двигалось бы вечно.
И скорость относительна!
Из принципа относительности движения следует, что говорить о прямолинейном и равномерном движении тела с некоторой скоростью, не указывая, относительно какой из покоящихся лабораторий измерена скорость, имеет столь же мало смысла, как говорить о географической долготе, не условившись заранее, от какого меридиана ее отсчитывать.
Скорость оказывается тоже относительным понятием. Определяя скорость одного и того же тела относительно разных покоящихся лабораторий, мы будем получать разные результаты. Но вместе с тем всякое изменение скорости, будь то ускорение, замедление или изменение ее направления, имеет абсолютный смысл и не зависит от того, в какой покоящейся лаборатории мы наблюдаем движение.
Глава третья
ТРАГЕДИЯ СВЕТА
Свет распространяется не мгновенно
Мы убедились в наличии принципа относительности движения, в существовании бесчисленного множества «покоящихся» лабораторий. В последних законы движения тел не отличаются друг от друга. Однако существует вид движения, на первый взгляд противоречащий установленному выше принципу. Это — распространение света.
Свет распространяется не мгновенно, хотя и с огромной скоростью — 300 000 километров в секунду!
Такую колоссальную скорость трудно постигнуть, поскольку в повседневной жизни нам приходится встречаться со скоростями, неизмеримо меньшими. Например, даже скорость советской космической ракеты достигает лишь 12 километров в секунду. Из всех тел, с которыми мы имеем дело, наиболее быстро перемещается Земля при своем обращении вокруг Солнца. Но и скорость Земли всего лишь 30 километров в секунду.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.