Что такое бионика - [15]
Схема фильтра включает запоминающее устройство, схему кратковременного накопления и сравнивающее устройство. Накопление данных о форме кривой входного сигнала при его приеме происходит в запоминающем устройстве. В специальном устройстве сравниваются данные со входа фильтра и выхода схемы кратковременного накопления. Когда на входе появляется серия сигналов одинаковой формы, она фиксируется в запоминающем устройстве. Затем из всех хаотически появляющихся на входе фильтров сигналов будут выделяться и пропускаться импульсы с формой кривой, которую «запомнил» фильтр.
Сравнивающее устройство обнаруживает повторяемость формы импульса, чтобы точно воспроизвести эту форму в запоминающем устройстве.
С пропаданием избранного сигнала система приходит в равновесие до появления нового сигнала, форма которого повторяется. Происходит восстановление сигналов, накапливаемых в запоминающем устройстве.
Как же происходит сравнение формы пришедшего сигнала и того, который «помнит» фильтр? Это сравнение осуществляется в нескольких различных точках, размещенных по огибающей импульса. Число таких точек называется «числом измерений» системы.
На рис. 16 показана блок-схема экспериментальной системы с десятью измерениями, предложенной одной из зарубежных фирм.
Рис. 16. Блок-схема экспериментальной системы с десятью измерениями.
Линия задержки, которая играет роль системы кратковременного накопления, имеет десять отводов. Запоминающее устройство содержит десять конденсаторов, зашунтированных сопротивлениями. В корреляторе соответственно предусмотрено десять умножителей.
Напряжения с участка линии задержки и ячейки запоминания поступают в умножитель, дающий на выходе произведение этих двух напряжений. Сигналы от всех умножителей складываются и суммарный сигнал подается на детектор. Он-то и выявляет, насколько идентичны формы сигналов. Достигается это сравнением суммарного сигнала с тем, который «помнит» фильтр, так называемым опорным сигналом. Если первый равен второму или больше его, детектор отпирает арифметический блок системы обнаружения. С помощью десяти дополнительных конденсаторов «копированный» сигнал усиливается. Это означает, что в начале процесса сравнения схема выдает в сравнивающее устройство более точный фиксированный сигнал. Если на вход сигнал поступил не полностью, а есть всего одна его составляющая, все равно система начинает «приспосабливаться» к нему. Стоит сигналу пропасть, как опорный сигнал падает до нуля. При появлении нового сигнала система готова к действию. Значит, она способна «расшифровывать» кодированные сигналы с периодически меняющими кодами. Для сигналов с более сложной формой нужно большее число измерений.
Самонастраивающиеся системы широко используются за рубежом при разработке автопилотов для самолетов и ракет, а также при проектировании систем автоматического управления для ракетопланов и космических кораблей.
Известно, что летательный аппарат оказывается в самых различных условиях и его характеристики существенно меняются в зависимости от изменения веса и конфигурации, скорости, плотности атмосферы, маневра цели и типа траектории. Так, самонастраивающаяся система, используемая для автопилота, должна, исходя из условий полета, изменять свои параметры так, чтобы, несмотря на эти изменения, сохранить требуемое качество работы. Возьмем, к примеру, такой показатель окружающих условий, как температура. В полете придется измерять температуру тех участков космического корабля, которые наиболее подвержены нагреванию, например при входе в плотные слои атмосферы. По результатам этих измерений система должна так корректировать траекторию, чтобы корабль не попал в области, где его ждет чрезмерный нагрев.
Чтобы лучше понять принцип самонастраивающегося регулирования на самолете, можно сослаться на действия летчика в полете. Покачивая ручку управления, он слегка возмущает полет самолета, что позволяет ему чувствовать свойства машины и достигать оптимального (наилучшего) управления, несмотря на изменение свойств самолета при наборе высоты или изменении скорости полета.
Рассмотрим один из образцов самонастраивающихся автопилотов, примененных, в частности, на американском истребителе (рис. 17).
Рис. 17. Схема самонастраивающегося автопилота.
Главная часть автопилота — мультивибратор — генератор электрических колебаний, форма которых отлична от синусоидальной. Он выполняет функции быстродействующего реле. Если самолет сохраняет заданное положение, мультивибратор, переключаясь в одно из двух устойчивых состояний, вырабатывает короткие электрические импульсы, противоположной полярности и равные по мощности. Частота их составляет от 4 до 6 гц. Эти импульсы подводятся к рулевой машинке, и она, естественно, совершает колебания около нейтрального положения. Среднее положение руля остается постоянным, хотя он сам и перемещается на 0,1° на частоте импульсов. Самолет также имеет установившиеся колебания, совершенно незаметные для летчика.
С изменением положения самолета сигнал соответствующего гироскопа заставят мультивибратор задерживаться в одном устойчивом положении дольше, чем в другом. Значит, импульсы одной полярности будут действовать на рулевую машинку более продолжительный период, чем импульсы противоположной полярности. Будет соответствующим образом повернут руль, и самолет возвратится в заданное положение.
Эта книга посвящена известному военачальнику, Герою Советского Союза, командующему 4-й воздушной армией в годы Великой Отечественной войны, главному маршалу авиации Константину Андреевичу Вершинину. Авторы, известные журналисты, рассказали об эпизодах из его жизни, в которых особенно ярко проявился характер героя, человека волевого, целеустремленного, посвятившего свою жизнь становлению и совершенствованию советской авиации.
Автор рассказывает о самом могучем виде Советских Вооруженных Сил — Ракетных войсках стратегического назначения. В книге показаны новые черты и возможности, обретенные всеми видами Вооруженных Сил после оснащения их ракетно-ядерным оружием. Подробно рассказывается об оперативно-тактическом ракетном оружии, зенитных ракетах, самолетах и кораблях-ракетоносцах. Приведены яркие примеры отличного владения новым оружием воинов-сухопутчиков, воинов ПВО, моряков, авиаторов, поражающих цели без промаха в любых самых сложных условиях.
Книга посвящена великому ученому-физику, создателю первой советской атомной бомбы, Игорю Васильевичу Курчатову.
Главный конструктор… В памятные для нас первые годы штурма космоса лишь немногие знали, что это звание принадлежит Сергею Павловичу Королеву. Из этой книги читатель узнает, как выковывались в характере С. П. Королева черты, сделавшие его горячим патриотом Родины, первооткрывателем космоса. Исследуя жизнь выдающегося ученого и конструктора, автор использовал многочисленные документы. Он делится впечатлениями от личного общения с С. П. Королевым.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Вся жизнь Сергея Павловича Королева - это непрерывное творчество, это научный поиск идей и решений, это труд над проектами новых образцов техники, в осуществлении которых участвовали большие коллективы. Книга о Королеве показывает, в чем сила и значение его как конструктора-новатора, организатора науки, общественного деятеля, показывает качества, счастливо соединившиеся в Сергее Павловиче, в их становлении и развитии.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.