Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - [39]

Шрифт
Интервал

Что сделать в понедельник? Перещелкните свою автоматизацию на «вкл.»

Автоматизация не произойдет автоматически. В связи с этим вот несколько уроков, выученных у тех, кто уже использовал процесс автоматизации, чтобы придать импульс вашим инициативам по автоматизации. Мы решили, что четыре этих «правила движения», будут особенно полезны:

1. Установите свои 25%–25% обязательной автоматизации.

2. Найдите свои цели для автоматизации процесса.

3. Прорвитесь сквозь «латунную стену».

4. Создайте повторяющийся процесс, чтобы упростить, сгладить работу.

Установите свои 25%–25% обязательной автоматизации

Приходя на работу, (почти) каждый человек имеет цель. Дела протекают практически одинаково, изо дня в день. В каждое отдельно взятое утро понедельника почти невозможно представить, чтобы работа делалась по-другому. Но именно это вы должны сделать в первую очередь. Чтобы начать любые значимые перемены с использованием автоматизации, вы должны закрыть глаза и вообразить, что вещи могут быть сделаны совершенно по-другому.

Мы считаем, что базовыми ожиданиями должно быть снижение цены на 25% с соответствующим ростом производительности на 25%. Основываясь на сегодняшних средних уровнях (около 15%) и улучшении производительности, вызванном некоторыми решениями (до 90%), это должно стать вашим выполнимым и быстро внедряемым планом первоначальных попыток роботизированной автоматизации процессов.

Причина, по которой правило 25%–25% эффективно, в том, что оно заставляет вашу команду по-другому подумать о том, «как у нас тут все делается». Когда цель, скажем, 5% снижения расходов и 5% роста производительности, команда продолжит думать так же, как обычно. Подняв планку до 25%–25%, вы ясно даете понять, что традиционного коктейля из реорганизации, аутсорсинга и/или корпоративных программных систем недостаточно. Такие результаты даст только цифровая автоматизация процесса. Проще говоря, если вы не можете добиться сокращения расходов хотя бы на 25%, у вас нет настоящих решений «автоматизации». И если вы не можете получить 25% роста производительности, то платформа ИИ работает не так, как должна.

Найдите свои цели для автоматизации процесса

Отыскивая варианты для начальной автоматизации, которая должна затрагивать не менее двух или трех процессов, находите свои точки на рабочем континууме человек—машина (см. рис. 7.5). Лучшие отправные точки автоматизации – в левой части континуума: в этих процессах машина может быстро взять на себя большую часть работы. Как мы описывали в главе 3, это должны быть области с высоким процентом рабочих задач, которые могут быть автоматизированы.


Рисунок 7.5. Рабочий континуум человек—машина


Выбирать свои первые цели для автоматизации нужно вдумчиво, поскольку успех или отсутствие успеха этого начального внедрения будет диктовать ваши последующие инициативы с ИИ. В своей работе с десятками начинаний с использованием ИИ мы увидели, что успешные попытки отвечают этим критериям.

Часто повторяющиеся задачи. Найдите задачи, которые часто приходится выполнять, очень распространенные в вашей компании. Коротко говоря, поищите деятельность, которой многие люди занимаются каждый день. Это может быть обработка инвойсов, сверка документации, «отбор и упаковка», согласование заказов, новые ответы по телефону на одни и те же вопросы и так далее. Некоторые из этих задач уже и так заметно автоматизированы, но многие, по нашим наблюдениям, еще нет. Дайте себе честный ответ: эти области, и многие другие, автоматизированы настолько, насколько это возможно? И есть ли интеллектуальная составляющая в течение процесса? Любые объемные, часто повторяющиеся задачи – первые кандидаты на автоматизацию.

Задачи, почти не требующие человеческого суждения. Роботы отлично считают, люди считают хуже. Напротив, люди больше способны к комплексным суждениям, в то время как ИИ и алгоритмы – нет. Поэтому работа, крепко висящая на деревьях решений (в противоположность амбивалентности, интуиции, инсайту, сложным суждениям) – сильный кандидат на автоматизацию. Машины способны на информированные результаты, однако принятие решений, основанных на нюансах, в обозримом будущем будет требовать человеческого участия. И напротив, любая работа, являющаяся в основном последовательностью шагов «если-это-то-это», должна быть автоматизирована.

Задачи, требующие низких уровней эмпатии. Регистрация заказов, вынесение решений по заявлениям и сверка инвойсов – процессы, требующие аккуратности и скорости… но редко эмпатии. Если бот может существенно увеличить точность, систематичность или скорость, многие из нас смирятся с отменой фактора эмпатии. Уже сейчас внутри вашей организации есть много областей, в которых должна быть применена логика. Их нетрудно будет отыскать.

Генерирование задач и работа с большими объемами данных. Любой процесс, связанный с потенциальной генерацией большого количества информации, особенно клиентской, должен быть автоматизирован с единственной целью сбора данных, вашего собственного сырьевого материала. Люди, даже если вы можете позволить себе иметь достаточное количество сотрудников, не справятся с объемами данных, когда становятся умными и подключается все больше и больше вещей. В качестве небольшого примера, представьте, что все уличное освещение в городе среднего размера умное и способно сообщать не только о собственном «здоровье» (например, о том, нужно ли их заменить), но могут также информировать о потоке транспортных средств. Объем данных, генерируемых в «решете» информации целого города, будет далеко за пределами человеческих способностей к управлению и обработке данных. В подобных сценариях автоматизация не заменит людей, а станет фундаментальным строительным блоком для создания новых сервисов и идей, которые, в свою очередь, создадут ценность. В своей организации стоит искать области, в которых процессы и потоки могут управляться сенсорами и данные от которых, прежде недоступные, могут генерироваться и администрироваться.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Кремлевская школа переговоров

«Кремлевская школа переговоров» приобрела мировую известность из-за особо жесткого стиля ведения переговоров, которого придерживались ее адепты. Эта книга рассказывает о главных постулатах рассматриваемой школы и описывает различные техники ведения агрессивных переговоров.Игорь Рызов – один из ведущих российских экспертов в области ведения переговоров. За 18 лет опыта ведения коммерческой деятельности ему приходилось слышать «нет» чаще, чем в свое время советским дипломатам. В этой книге он расскажет о том, как выходить победителем из любых споров и направлять переговоры в выгодное для вас русло.Книга также издавалась под названием «Я всегда знаю, что сказать.


Теория везения

Скотт Адамс отбрасывает фантики и делится своим опытом и выводами, к которым он пришел за свою жизнь: «Удачу можно организовать, ну или что-то типа того». Он пострадал от неудач в своей жизни больше, чем кто-либо, кого вы когда-либо встречали. Он прошел путь от несчастного офисного планктона к автору всемирно известных комиксов Dilbert. Стратегия достижения успеха Скотта заключается в том, чтобы лелеять случившуюся неудачу, обнять ее, а затем положить в карман и не забывать. Всегда помните, что неудача — это ваш товарищ.


Теория каст и ролей

Много ли среди нас тех, кто может уверенно сказать – куда идти, где мое место, чего я хочу, как жить и где жить?! Преобладающее большинство людей на этой планете толком не знают чего они хотят, не представляют окружающего мира, не имеют правильных целей, да и вообще обладают весьма узким кругозором. Такое явление связано с тем, что наш мир за последние 50 лет стал невероятно сложным, ушли упрощенные смыслы жизни, общество становится все более разделенным, сокращаются ниши для свободной инициативы. Эта революционная книга обрела тысячи приверженцев еще до официальной публикации! В ней автор книги Алекс Крол делит общество на касты и описывает роли людей в них.


Продавец обуви

Nike — один из самых узнаваемых мировых брендов. Создатель компании — Фил Найт — один из богатейших людей, хотя еще в юности он не мог себе позволить купить кроссовки Adidas.50 лет назад студент Орегонского университета и бегун на средние дистанции Фил Найт занял у отца 50 баксов и начал перепродавать кроссовки из Японии. Сегодня годовой оборот компании Nike составляет 30 миллиардов долларов. А пара «найков» найдется в шкафу у каждого — от президента до подростка.Фил Найт — человек-загадка, он редко дает интервью.