Черная маска из Аль-Джебры - [3]

Шрифт
Интервал

Нулик достал из кармана талисман и тяжело вздохнул. Ему очень не хотелось с ним расставаться. Но уговор дороже денег! И вот уже стручок у Олега. Тот нажимает большим пальцем на бледно-зеленый шов, стручок лопается…

— Смотрите, ребята, здесь какая-то бумажка!

— А где же горошины?

— Да-да, где горошины? — суетится Нулик.

— Постой, сейчас не до горошин. Сперва посмотрим, что в бумажке. — Сева торопливо разворачивает свернутый в трубочку листок.

Вот что там написано:

«Трэялрп вюоп ф нира дфявзоо, жфой Очсмл тфпъзб тэим пзрф уфлцэ йц, идшйн ршднишорм ож уп едж, ож уп шкьехж дхесыэфь, рхасеэфф пчбфбрб а рфбщяем, б Очесл гкъчшм нпж рхасеэфф усжп, шфп по ршднишорм; ртштн едж дхесыэфь а рфуфяом, б рцнгльйжя фрит гйшйс? Тшязжфл».

— Ничего не понимаю. Чепуха какая-то.

— Может быть, незнакомый язык? — предположила Таня.

— Но буквы-то русские!

— Ну и что ж! В Болгарии тоже пишут русскими буквами.

— Не только в Болгарии, но и в Югославии, и в Азербайджане, и на Украине…

Сева досадливо отмахнулся:

— Я все равно, кроме русского, никакого не знаю.

Олег взял у него записку и внимательно перечитал.

— Постойте-ка, — сказал он, — в любом языке слова состоят из гласных и согласных букв. А здесь попадаются из одних согласных. Например, «пчбфбрб». Такого и не выговоришь. А в этом слове хоть и есть гласная, но ее все равно что нет: «тшязжфл».

— Ой, — засмеялся Нулик, — у меня язык слипся!

— По-моему, говорить на таком языке невозможно! — сказала Таня.

— А на нем никто и не говорит. — Олег загадочно улыбнулся. — Такого языка вообще нет.

— Что же это? — Таня указала на записку.

— А это — шифрованное письмо.

— Ух ты! — выдохнул Сева. — Ну и голова у тебя!

— Погоди радоваться, — остановила его Таня. — Ведь письмо надо еще расшифровать.

— Легко сказать. А ключ к шифру? Где его возьмешь?

Ребята задумались.

Все началось так удачно — и на тебе!

Особенно огорчился Сева. В мечтах он уже видел себя прославленным сыщиком, раскрывшим тайну Черной Маски. И вот все рухнуло. Даже знаменитая ищейка Пончик не мог ему ничем помочь.

Кстати, где он?

— Пончик, Пончик, сюда!

Пончик подбежал, добродушно виляя хвостом. В зубах у него белела какая-то бумажка. Уж не новое ли сообщение от Черной Маски? Но нет, это всего-навсего телеграмма Нулика, которую Сева обронил по дороге. Теперь он в сердцах скомкал и отшвырнул ее в сторону.

Олег поднял и бережно расправил смятый листок.

— Слушайте, — сказал он немного погодя, — какое слово стоит обычно в конце телеграммы?

— Нулик! — обрадовался малыш.

— Это в твоей телеграмме, а в любой другой?

— Конечно, подпись, — сказала Таня.

— Так, может, и эта записка кончается подписью?

— Хоть бы и так. Мы-то все равно не знаем, чья она.

— Зато мы знаем, что в имени семь букв: «Тшязжфл».

— Кто же мог подписать записку?

— Я знаю! — догадался Нулик. — Маска!

— Не годится. В слове «маска» всего пять букв.

— Не маска, так стручок! — предположила Таня.

— Подходяще. В этом слове как раз семь букв.

Олег вынул карандаш и написал на обороте телеграфного бланка шифрованную подпись, а под ней слово «стручок»:


Т Ш Я З Ж Ф Л
С Т Р У Ч О К

— Вот здорово! Значит, теперь мы знаем целых семь букв из этого шифра: Т — это С, Ш — это Т, Я — Р…

Ребята принялись подставлять буквы в слова, обозначая неразгаданные точками. Вот что у них получилось:

«С..рк.. .... о .... .ор.у.., чо.. ....к со..у. с... .у.о .ок.. .., ..т.. .т...т... .ч .. ..ч, .ч .. т....ч ......о., ......оо ...о... . .о..р.., . ....к ....т. ..ч ......оо ..ч., то. .. .т...т...; .стс. ..ч ......о. . .о.ор.., . ....к..чр о..с ..т..? Стручок».

— Да, — протянул Сева, — маловато.

— Нелепость какая-то, — заметила Таня. — Что это за слово, которое кончается двумя «о»?

— Мороженоо! — закричал Нулик.

— Во-первых, в этом слове девять букв, а в зашифрованном — восемь; а потом, такого слова нет.

— Как это нет, если я его ел? — возмутился Нулик.

— Может, и ел, только не мороженоо, а мороженое.

— А вот и еще! Знаете вы слово, которое кончается на «чр»? — спросил Сева.

— Нет такого слова.

— Значит, подпись не та. Не стручок.

Олег задумался.

— Подпись-то может и та, да шифр другой.

— Что в лоб, что по лбу! — вздохнул Сева. — Тайны стручка нам все равно не разгадать.

Погоня

Смеркалось.

В Арабелле начали зажигаться огни.

Ребята сидели на обочине шоссе, ведущего к Римским развалинам, и уныло глядели на пустой стручок.

Неожиданно поднявшийся ветер подхватил его и погнал вдоль дороги.

— Держи! Держи! — закричали все и бросились вдогонку… Куда там!

Стручок несся с такой быстротой, что поймать его было невозможно. Он словно дразнил своих преследователей: остановится, подпустит поближе, а потом возьмет да и ускользнет из-под самого носа.

Тем временем совсем стемнело, а отважные раскрыватели великих тайн все еще бежали за неуловимым талисманом. Впопыхах никто из них не удивился, что теперь стручок светится изнутри зеленоватым светом.

Но вот он сделал крутой поворот и остановился у большого камня. Это была та самая пещера, где Нулик встретил Черную Маску. К ней-то и подбежали измученные путешественники.

На этот раз стручок и не думал удирать. Он плавно покачивался в воздухе над входом в подземелье, легко уклоняясь от ловивших его рук.


Еще от автора Владимир Артурович Левшин
Три дня в Карликании

Рассказ в веселой и доступной форме детям об арифметике.


Магистр Рассеянных Наук

В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».


Стол находок утерянных чисел

Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.


В лабиринте чисел

Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Фрегат капитана Единицы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.