Чем мир держится? - [58]
Так вот, неравномерное движение «гравитационных зарядов» (а такие «заряды», как вы знаете, несут все известные нам тела) тоже должно создавать волны, только, естественно, гравитационные. Поскольку же гравитация тесно связана с геометрическими свойствами пространства, то колебания поля тяготения есть колебания кривизны пространства[20].
Необходимая оговорка: польский физик Леопольд Инфельд доказывал, что гравитационные волны невозможны, невозможен реальный перенос ими энергии. Но мало кто из теоретиков разделяет сегодня эту точку зрения.
Равномерное движение в нашем мире встречается не так уж часто. Движение Земли и других планет вокруг Солнца — движение с угловым ускорением, значит, неравномерное. Любое космическое тело при движении по своей орбите излучает гравитационные волны, они рождаются и при любых столкновениях тел, при взрывах — словом, буквально всюду.
Мир должен быть пронизан гравитационными волнами. А поскольку они подчиняются законам квантовой механики, то являются одновременно материальными частицами, имеют массу. По некоторым подсчетам, около трети всей массы-энергии в нашей Вселенной составляют именно гравитоны, родившиеся в течение тех десяти — двадцати миллиардов лет, которые отводят астрофизики на существование Метагалактики. В каждом кубическом сантиметре космического пространства содержится, возможно, десять в минус тридцатой степени грамма гравитонов — столько же, сколько (в среднем) всей видимой материи — от звезд до фотонов (еще треть массы мира составляют, возможно, нейтрино). И вот это-то грандиозное явление пока что только описано, но не обнаружено. Причина — та самая слабость силы тяготения, о которой уже столько раз говорилось. Вот какой пример приводит В. Борисов в книге «Загадка тяготения»: «Если взять несколько брусков кварца массой в 1 т, возбудить в них такие упругие колебания, что бруски будут колебаться в режиме, близком к разрушению (на это понадобится 10>8 Вт мощности), мощность всего гравитационного излучения составит 10>-21 Вт».
Коэффициент полезного действия в этом случае составит одну стомиллионную долю от одной квадриллионной доли: десять в минус двадцать девятой степени.
Пожалуй, только в области тяготения ученым приходится практически иметь дело с десятками, над которыми стоят в качестве показателей степени столь огромные отрицательные числа! Тут гравитационщикам не позавидуют даже специалисты по элементарным частицам.
Причем Борисов еще считает нужным оговорить, что приведенный им пример — «один из наиболее удачных в отношении коэффициента полезного действия».
Мало того. При приеме излученной гравитационной энергии нам придется иметь дело с той же величиной КПД. Значит, при массе излучателя в одну тонну на приемной гравитационной антенне придется измерять величину, равную всего-навсего десяти в минус пятидесятой степени ватта. Похоже, что бессмысленно передавать эту чудовищно малую величину словами, лучше написать так: 10>-50.
Но ведь в мире столько природных источников гравитационных волн! Вселенная просто переполнена ими. Однако ближайшие из них тоже не отличаются мощностью. Самая большая планета Солнечной системы, Юпитер, излучает в виде гравитационных волн ровно столько энергии, сколько достаточно для электролампочки в четыреста пятьдесят ватт. Не густо. Что говорить об остальных планетах?
Зато чем дальше в космос, тем больше мы встретим мощных генераторов гравитационного излучения. При некоторых взрывах сверхновых звезд, при гравитационном коллапсе (если он происходит несимметрично, то есть вещество звезды не устремляется к ее центру со всех сторон с одной и той же скоростью), при столкновениях нейтронных звезд и черных дыр гравитационные волны должны излучаться в огромных количествах. Предполагают, что тут возможен КПД перехода массы-энергии в гравитационное излучение, равный десяткам процентов. Энергия такого излучения оценивается теперь в эргах числом, равным десяти в пятьдесят второй— пятьдесят пятой степени. Снова огромная величина показателя степени, но теперь со знаком плюс! Вот как пополняются «запасы» гравитонов в Метагалактике, составляющие, возможно, до трети ее массы. Но гравитационные волны от мощных взрывов всех видов рассеиваются в пространстве равномерно, до Земли доходит ничтожная доля их энергии. А КПД земной гравитационной антенны по-прежнему чрезвычайно низок.
И все-таки охота за гравитационными волнами началась. Ученый, который их обнаружит, станет новым Генрихом Герцем.
Ловля гравитонов — занятие сложное. Чтобы поймать радиоволну, как и любую электромагнитную волну, достаточно в принципе всего-навсего одного электрического заряда. Волна заставит его сместиться, а это смещение можно измерить.
Есть два основных способа принять гравитационные волны из космоса. Можно использовать то обстоятельство, что гравитационное излучение взаимодействует с электромагнитным полем и способно возбудить в нем колебания, которые и подлежат измерению. Можно измерить смещение тел в высокочувствительной механической системе. Именно этим и занимался в 1968–1971 годах профессор Мерилэндского университета в США Джозеф Вебер.
Где кончается фантазия, где начинается действительность? Эту грань не всегда легко различить в рассказах и повестях Романа Подольного. Герои его произведений сталкиваются со множеством проблем моральных, житейских, научных, тех, с которыми так или иначе встречается и почти каждый из нас. Без фантазии и без человечности эти проблемы одинаково неразрешимы. В книгу включены произведения уже известные читателям (“Скрипка для Эйнштейна”, “Согласен быть вторым”, “Золото Ньютона”, “Сага про Митю” и др.), а также новые рассказы (“Планета Правда”, “Приезжайте в Куртеневку”).Содержание:Маленькие повестиСкрипка для ЭйнштейнаСогласен быть вторымСага про МитюЗолото НьютонаРека ГалисРассказыВозможное и невозможноеПланета ПравдаПисьмоЛегкая рукаЖивоеЗакон сохраненияПечальная историяТысяча жизнейЛучший из возможных мировДальнейшему хранению не подлежитПриезжайте в КуртеневкуМестьРозыгрышСообщающийся сосудПотомки ОрфеяВеселое и невеселоеПоследний рассказ о телепатииТри интервью из будущегоБез подсказокЧитательМамочкаЛовкость рукПрыжок в высотуКому везетСлед ОстаповБывшее и небывшее (Неисторические рассказы)Мореплавание невозможноТем хуже для фактовНачало одной дискуссииНеудачный дебютПутешествие в АнглиюЦель и средстваПределы фантазииПришельцыБессмысленный бракСлаваНет! (Закрыватель Америк)Всего один укол (Из рассказов путешественника по времени)
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Перфорированная лента — и неразделенная любовь. Цилиндрик из двадцати килограммов чистого золота — и планета Земля. Несколько латинских букв да арабских цифр — и закон, которому подчиняются галактики… Все это пары, в которых союзом «и» связаны модель и объект моделирования. Не только игрушечный самолетик создается «по образу и подобию» крылатого гиганта. Человек моделирует атом и молекулу, Солнце и вселенную, жизнь и чувства; свои модели создают наука и искусство; иные из них творятся гениями, другие — каждым из нас… Эта книга — о кибернетиках и историках, адмиралах и поэтах, шахматистах, физиках и экономистах, а вернее — о моделях, которые создавали и создают люди всех призваний и профессий.
На 1-й стр. обложки— рисунок Г. ФИЛИППОВСКОГО к повести В. Чичкова «Тайна Священного колодца».На 2 -й стр.обложки— рисунок П.ПАВЛИНОВА к очерку Юрия Тарского «Зеленые фуражки». На 3-й стр. обложки— фото В. МИШИНА «Глаза границы».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
14 декабря 1900 года впервые прозвучало слово «квант». Макс Планк, произнесший его, проявил осторожность: это только рабочая гипотеза. Однако прошло не так много времени, и Эйнштейн с завидной смелостью заявил: квант — это реальность! Но становление квантовой механики не было спокойно триумфальным. Здесь как никогда прежде драма идей тесно сплеталась с драмой людей, создававших новую физику. Об этом и рассказывается в научно–художественной книге, написанной автором таких известных произведений о науке, как «Неизбежность странного мира», «Резерфорд», «Нильс Бор».
Идея, которой поклонялись алхимики, пренебрегая насмешками и гонениями, пробилась сквозь века: физикам XX века удалось осуществить превращение одних элементов в другие.Об истории развития знаний о строении вещества от античности до наших дней увлекательно рассказывается в этой научно-популярной книге.
Научно-художественная книга о становлении — через трудности и поражения — теории, объясняющей современный облик Земли горизонтальным перемещением (раздвижением) крупных плит земной коры, сопровождавшимся излиянием базальтовых масс, образованием складчатых гор и океанических впадин. Значительное место в книге отведено описанию жизни и научной деятельности Альфреда Вегенера — автора гипотезы дрейфа материков.
История познания человеком электричества полна неожиданностей и драматизма. Среди «делавших» эту историю мы найдем людей разных профессий: физика, врача, переплетчика, столяра, государственного деятеля. Различны были их судьбы.В книге читатель встретится с участниками первых кругосветных путешествий, узнает об электрических рыбах, об оживлении людей с помощью электричества… Первое и второе издания книги, вышли в издательстве «Знание» в 1970 и 1978 гг.Книга рассчитана на массового читателя.