Быстрый счет. Тридцать простых приемов устного счета - [2]

Шрифт
Интервал

87*11=870+87=957

Деление на 5, на 1>1>/2,на 15

§ 22

Чтобы устно разделить число на 5, отделяют запятой в удвоенном числ-последнюю цифру. Например:

68:5=136:10=13,6

237:5 =474:10=47,4

§ 23

Чтобы устно разделить число на 1>1>/2 делят удвоенное число на 3. Например:

36:1>1>/2=72:3=24

53:1>1>/2=106:3=35>1/>3

§ 24.

Чтобы устно разделить число на 15, делят удвоенное число на 30. Например

240:15=480:30=48:3=16

462:15=924:30=30>24/>30=30>4/>5=30,8 (или 924:30 =308:10=30,8)

Возвышение в квадрат

$ 25.

Чтобы возвысить в квадрат число, оканчивающееся цифрой 5 (например 85), умножают число десятков (8) на него же плюс единица (8*9=72) и приписывают 25 (в нашем примере получается 7225). Еще примеры:

25>2; 2*3=6; 625

45>2; 4*5= 20; 2025

145>2; 14*15 = 210; 21025

Прием этот вытекает из формулы (10х+5)>2 = 100х>2+100х+25=100х(х+1)+25

§ 26.

Сейчас указанный прием приложим и к десятичным дробям, оканчивающимся цифрой 5:

8,5>2 = 72,25

14,5>2=210,25

0,35>2 = 0,1225>f и т. п.

§ 27.

Так как 0,5= ½, а 0,25 = ¼, то приемом § 25 можно пользоваться также и для возвышения в квадрат чисел, оканчивающихся дробью ½:

(8½ )>2 =72 ¼

(14½)>2 = 210 ¼ и т п.

§ 28.

При устном возвышении в квадрат часто удобно бывает пользоваться формулой (a +-b)>2 = a>2 +b>2+- 2ab.

Например: 41>2=40>2 +1+2*40= 1601+80= 1681

69>2=70>2+1-2*70=4901-140=4761

36>2 =(35+1)>2=1225+1+ 2*35=1296

Прием удобен для чисел, оканчивающихся на 1, 4, 6 и 9.

Вычисления по формуле

(а+b) (а-b) = а>2 — b>2

§ 29.

Пусть требуется выполнить устно умножение 52*48

Мысленно представляем эти множители в виде (50 + 2)*(50—2)

и применяем приведенную в заголовке формулу:

(50+2)*(50—2)=50>2-2>2= 2496

Подобным же образом поступают во всех вообще случаях, когда один множитель удобно представить в виде суммы двух чисел, другой — в виде разности тех же чисел:

69*71=(70—1)*(70+1)=4899

33*27=(30+3)*(30—3)=891

53*57=(55—2)*(55+2)=3021

84*86=(85-1)*(85+1)=7224

§ 30.

Указанным сейчас приемом удобно пользоваться и для вычислений следующего рода:

7 ½*6½=(7 + ½ )*(7 — ½)=48

11 >3/>4*12 >1/>4= (12 - >1/>4)*(12 +>1/>4) =143 >15/>16

Полезно запомнить:

37*З =111

Запомнив это, легко выполнять устно умножение числа 37 на 6, 9, 12 и т. п.

37*6=37*3*2=222

37*9=37*3*3=333

37*12=37*3*4=444

37*15=37*3*5 =555 и т. д,

7*11*13=1001

Запомнив это, легко выполнять устно умножения следующего рода:

77*13=1001

77*26=2002

77*39=3003 и т. д.

91*11=1001

91*22=2002

91*33=3003 и т. д.

143*7=1001

143*14=2002

143*21=3003 и т. д.

В нашей книжечке указаны только простейшие, наиболее удобоприменимые способы устного выполнения действий умножения, деления и возвышения в квадрат. Практикуясь в сознательном пользовании ими, вдумчивый читатель выработает для себя ряд еще и других приемов, облегчающих вычислительную работу.



Еще от автора Яков Исидорович Перельман
Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Математические головоломки

Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.