Бозон Хиггса. От научной идеи до открытия «частицы Бога» - [65]
Куперовская пара. При охлаждении ниже критической температуры электроны в сверхпроводнике испытывают слабое взаимное притяжение. Электроны с противоположными спинами и импульсами образуют куперовские пары, которые совместно движутся по металлической решетке, и вибрация решетки способствует их движению. Такие пары электронов имеют спин 0 или 1 и потому являются бозонами. Вследствие этого количество пар, которые могут занимать одно квантовое состояние, не ограничено, и при низких температурах они могут «сгущаться», приобретая макроскопические размеры. Куперовские пары в таком состоянии не испытывают сопротивления, проходя по решетке, так возникает явление сверхпроводимости.
Лептон. От греческого leptos, маленький. Лептоны образуют класс частиц, которые не подвержены сильному ядерному взаимодействию. Их сочетания с кварками образуют материю. Как и кварки, лептоны относятся к трем поколениям и включают в себя электрон, мюон и тау с электрическим зарядом –1, спином >1/>2 и массами 0,51 МэВ, 106 МэВ и 1,78 ГэВ и соответствующие нейтрино. Электронное, мюонное и тау-нейтрино не переносят электрический заряд, имеют спин >1/>2 и обладают очень малой массой (необходимой, чтобы объяснить феномен нейтринной осцилляции, квантовомеханического смешения ароматов нейтрино, то есть со временем ароматы могут изменяться).
Лэмбовский сдвиг. Небольшая разница между энергией двух электронов атома водорода, открытая Уиллисом Лэмбом и Робертом Резерфордом в 1947 году. Лэмбовский сдвиг подтолкнул физиков к решению проблемы перенормировки и в конечном итоге созданию квантовой электродинамики.
Лямбда-CDM, ΛCDM. Аббревиатура CDM означает «холодная темная материя». Также известна как Стандартная модель космологии Большого взрыва. Модель ΛCDM объясняет крупномасштабную структуру Вселенной, реликтовое микроволновое излучение, ускоряющееся расширение Вселенной и распространение таких элементов, как водород, гелий, литий и кислород. Согласно модели ΛCDM, 73 процента массы-энергии Вселенной приходится на долю темной энергии (которая отражается в размере космологической постоянной Λ), 22 процента – холодной темной материи, и таким образом на долю видимой Вселенной – галактик, звезд и известных планет – остается всего 5 процентов.
Мега. Приставка, означающая миллион. Мегаэлектронвольт (МэВ) – это миллион электронвольт, 10>6 эВ или 1 000 000 эВ.
Мезон. От греческого mesos, средний. Мезоны – подкласс адронов. Они испытывают сильное ядерное взаимодействие и состоят из кварков и антикварков.
Механизм Хиггса. Назван в честь британского физика Питера Хиггса, но также часто называется по именам других физиков, независимо открывших механизм в 1964 году. Вариант названия: механизм Браута – Энглера – Хиггса– Хейгена – Гуральника – Киббла, в честь физиков Роберта Браута, Франсуа Энглера, Питера Хиггса, Карла Хейгена, Джеральда Гуральника и Тома Киббла. Механизм описывает, каким образом фоновое поле – называемое полем Хиггса – нарушает симметрию в квантовой теории поля. В 1967–1968 годах Стивен Вайнберг и Абдус Салам независимо друг от друга использовали этот механизм в работе над теорией поля для электрослабого взаимодействия.
Миллиард. Тысяча миллионов, 10>9 или 1 000 000 000.
МИТ. Массачусетский институт технологий.
Молекула. Фундаментальная единица химического вещества, образованная из двух или более атомов. Молекула кислорода O2 состоит из двух атомов кислорода. Молекула воды H2O состоит из двух атомов водорода и одного атома кислорода.
Моль. Стандартная единица измерения количества вещества, равная его атомному или молекулярному весу в граммах. Моль содержит 6,022 × 10>23 частиц. Название происходит от слова «молекула».
МССМ. Минимальная суперсимметричная Стандартная модель – минимальное расширение обычной Стандартной модели физики элементарных частиц, которое учитывает суперсимметрию. Разработана в 1981 году Ховардом Джорджи и Саввасом Димопулосом.
Мюон. Лептон второго поколения, эквивалентный электрону, с зарядом –1, спином >1/>2 (фермион) и массой 106 МэВ. Впервые открыт в 1936 году Карлом Андерсоном и Сетом Неддермейером.
Нарушение симметрии. Спонтанное нарушение симметрии происходит каждый раз, когда самое низкоэнергетическое состояние физической системы имеет более низкую симметрию, чем высокоэнергетические состояния. Когда система теряет энергию и находится в самом низкоэнергетическом состоянии, симметрия спонтанно уменьшается, то есть нарушается. Например, карандаш, идеально сбалансированный и установленный на острие, симметричен, однако он падает и ложится в некоем определенном направлении в менее симмтеричном, но более стабильном, низкоэнергетическом состоянии.
Нейтральные токи (слабое взаимодействие). Взаимодействие между элементарными частицами, при котором не происходит изменение электрического заряда. Это может быть обмен виртуальными Z>0-частицами или одновременный обмен частицами W+ и W>— (см. рис. 15 и 16, с. 111 и 135).
Нейтрино. От итальянского «нейтрончик». Нейтрино не заряжены, имеют спин >1/>2 (фермион), это спутники отрицательно заряженных электронов, мюонов и тау-частиц. Считается, что нейтрино обладают очень малой массой, что необходимо для объяснения феномена нейтринной осцилляции, то есть квантовомеханического смещения ароматов нейтрино, таким образом, что аромат может со временем измениться. Нейтринная осцилляция решает проблему солнечных нейтрино – количество нейтрино, которые в соответствии с измерениями проходят сквозь Землю, не соответствует количеству электронных нейтрино, ожидаемому в результате происходящих в ядре Солнца реакций. В 2001 году было показано, что лишь 35 процентов солнечных нейтрино являются электронными нейтрино, а оставшаяся часть приходится на мюонные и тау-нейтрино. Это свидетельствует о том, что ароматы нейтрино меняются по мере их движения от Солнца к Земле.
Ядерное оружие начало вызывать у людей страх уже с того самого момента, когда теоретически была доказана возможность его создания. И уже более полувека мир живет в этом страхе, меняется лишь его величина: от паранойи 50-60-х до перманентной тревоги сейчас. Но как вообще стала возможной подобная ситуация? Как в человеческий разум могла прийти сама идея создания такого жуткого оружия? Мы ведь знаем, что ядерная бомба фактически была создана руками величайших ученых-физиков тех времен, многие из них были на тот момент нобелевскими лауреатами или стали ими впоследствии.Автор попытался дать понятный и доступный ответ на эти и многие другие вопросы, рассказав о гонке за обладание ядерным оружием.
В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.
Как выглядела Земля в разные периоды? Можно ли предсказать землетрясения и извержения вулканов? Куда и почему дрейфуют материки? Что нам грозит в будущем? Неужели дожди идут из-за бактерий? На Земле будет новый суперконтинент? Эта книга расскажет о том, как из обломков Большого Взрыва родилась наша Земля и как она эволюционировала, став самым удивительным местом во Вселенной – единственной известной живой планетой. Ведущие ученые и эксперты журнала New Scientist помогут ближе познакомиться с нашими домом, изучить его глубины, сложную атмосферу и потрясающую поверхность.В формате PDF A4 сохранен издательский макет книги.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.