Бозон Хиггса. От научной идеи до открытия «частицы Бога» - [50]
Кроме того, у каждого бозона Стандартной модели есть соответствующий симметричный бозон, который называется бозино, и на самом деле он фермион. Суперсимметричные партнеры фотона и частиц W и Z называются фотино, вино и зино.
Одно из преимуществ МССМ заключается в том, что она решает проблему бозона Хиггса. В МССМ петлевые поправки, из-за которых раздувается масса бозона Хиггса, компенсируются отрицательными поправками, проистекающими из взаимодействий с участием виртуальных суперсимметричных частиц. Например, увеличение массы бозона Хиггса благодаря взаимодействию с виртуальным истинным кварком компенсируется взаимодействием с виртуальным истинным скварком. Эта компенсация стабилизирует массу Хиггса и, следовательно, слабое взаимодействие. Чтобы этот механизм работал, МССМ требуются пять бозонов Хиггса с разной массой. Три из них нейтральны, а два переносят электрический заряд.
МССМ устраняет и еще один недостаток Стандартной модели. Как показали Вайнберг, Джорджи и Куинн в 1974 го ду, сильное, слабое и электромагнитное взаимодействия Стандартной модели становятся почти равными на высоких энергиях. Однако они не становятся абсолютно равными, как можно было бы ожидать в полностью объединенной теории поля электроядерного взаимодействия. МССМ предсказывает, что силы трех взаимодействий сойдутся в одной точке (см. рис. 23).
Кроме того, суперсимметрия может решить давнишнюю проблему космологии. В 1934 году швейцарский астроном Фриц Цвикки обнаружил, что средняя масса галактик в скоплении Волос Вероники, вычисленная по их гравитационным эффектам, не соответствует средней массе, вычисленной по светимости галактик в ночном небе. Целых 90 процентов массы, необходимой для объяснения гравитационных эффектов, как будто отсутствовала или была невидима. Эту невидимую массу назвали темной материей.
Рис. 23 (а) Если экстраполировать силы взаимодействий в Стандартной модели, из этого следует уровень энергии (и время после Большого взрыва), при котором они одинаковы и объединены. Однако они не сливаются полностью в одной точке. (b) В минимальной суперсимметричной Стандартной модели (МССМ) дополнительные квантовые поля влияют на экстраполяцию, и взаимодействия сливаются
Проблема темной материи не ограничилась одним скоплением галактик. Темная материя – ключевой компонент современной Стандартной модели космологии Большого взрыва, модели Лямбда-CDM (сокращение от Cold Dark Matter, холодная темная материя). Последовательные наблюдения микроволнового фонового излучения, произведенные спутником COBE и в последнее время спутником WMAP, позволяют предположить, что темная материя составляет около 22 процентов массы-энергии Вселенной. Около 73 процентов – это темная энергия, связанная со всепроникающим энергетическим полем вакуума, и таким образом на долю «видимой» материи Вселенной – звезд, нейтрино и тяжелых элементов, то есть всего, что мы есть, и всего, что мы видим вокруг, – приходится меньше 5 процентов.
Суперсимметрия предсказывает существование суперчастиц, на которые не влияет ни сильное, ни электромагнитное взаимодействие. Поэтому суперчастицы, например нейтралино, являются кандидатами на роль так называемых «вимпов» – слабовзаимодействующих массивных частиц (WIMP), которые, как считается, составляют значительную часть темной материи[148].
Возможно, существование такого сонма суперсимметричных частиц кажется фантастическим, но история физики элементарных частиц сплошь состоит из фантастических открытий, основанных на теоретических прогнозах, от которых поначалу многие отмахиваются, считая их абсурдными. Если суперсимметричные частицы действительно существуют, то некоторые из них, как ожидается, проявятся на энергиях порядка тераэлектронвольт.
Когда в начале нового тысячелетия на глубине более 150 метров под швейцарской и французской землей началось строительство Большого адронного коллайдера, было очевидно, что у него гораздо более масштабная задача, чем обнаружение электрослабого бозона Хиггса или даже нескольких бозонов или суперсимметричных частиц, предсказанных МССМ. Смысл был в том, чтобы выйти за пределы Стандартной модели; в нашей способности разобраться, из чего состоит и как устроен мир.
В декабре 2000 года начался демонтаж БЭП. Пришлось вывезти 40 тысяч тонн материала. Полностью туннель освободили к ноябрю 2001 года, когда инженеры-геодезисты начали размечать первый из 7 тысяч участков, отведенных под компоненты БАКа.
Неизбежно возникали задержки. В октябре 2001 года Майани установил значительный перерасход средств сверх сметы, и из-за последующей нехватки бюджетных средств завершение проекта отодвинулось еще на год, с 2006 на 2007. Как и у американцев, которые обнаружили это на примере своего незаконченного проекта по строительству ССК, новая технология с использованием сверхпроводящих магнитов забирала гораздо больше денег, чем закладывалось в смету.
Сооружение крупнейшей в мире охладительной системы, способной охлаждать сверхпроводящие магниты до температуры –271,4 °C, закончилось в октябре 2006 года. Последний из 1746 сверхпроводящих магнитов БАКа был установлен в мае 2007 года.
Ядерное оружие начало вызывать у людей страх уже с того самого момента, когда теоретически была доказана возможность его создания. И уже более полувека мир живет в этом страхе, меняется лишь его величина: от паранойи 50-60-х до перманентной тревоги сейчас. Но как вообще стала возможной подобная ситуация? Как в человеческий разум могла прийти сама идея создания такого жуткого оружия? Мы ведь знаем, что ядерная бомба фактически была создана руками величайших ученых-физиков тех времен, многие из них были на тот момент нобелевскими лауреатами или стали ими впоследствии.Автор попытался дать понятный и доступный ответ на эти и многие другие вопросы, рассказав о гонке за обладание ядерным оружием.
В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.
Как выглядела Земля в разные периоды? Можно ли предсказать землетрясения и извержения вулканов? Куда и почему дрейфуют материки? Что нам грозит в будущем? Неужели дожди идут из-за бактерий? На Земле будет новый суперконтинент? Эта книга расскажет о том, как из обломков Большого Взрыва родилась наша Земля и как она эволюционировала, став самым удивительным местом во Вселенной – единственной известной живой планетой. Ведущие ученые и эксперты журнала New Scientist помогут ближе познакомиться с нашими домом, изучить его глубины, сложную атмосферу и потрясающую поверхность.В формате PDF A4 сохранен издательский макет книги.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.