Большая Советская Энциклопедия (ФУ) - [43]
Фурье интеграл
Фурье' интегра'л, формула для разложения непериодической функции на гармонические компоненты, частоты которых пробегают непрерывную совокупность значений. Если функция f (x ) удовлетворяет на каждом конечном отрезке условию Дирихле (см. Фурье ряд ) и если сходится
то
Эта формула впервые встречается при решении некоторых задач теплопроводности у Ж. Фурье (1811), но её доказательство было дано позже другими математиками. Формулу (1) можно представить также в виде
где
В частности для чётных функций
где
Формулу (2) можно рассматривать как предельную форму ряда Фурье для функций, имеющих период 2T , когда Т ® ¥. При этом а (u ) и b (u ) аналогичны коэффициентам Фурье функции f (x ). Употребляя комплексные числа, можно заменить формулу (1) формулой
Формулу (1) можно преобразовать также к виду
(простой интеграл Фурье).
Если интегралы в формулах (2), (3) расходятся (см. Несобственные интегралы ), то во многих случаях их можно просуммировать к f (x ) при помощи того или иного метода суммирования . При решении многих задач используются формулы Ф. и. для функций двух и большего числа переменных.
Лит.: Титчмарш Е., Введение в теорию интегралов Фурье, пер. с англ., М. — Л., 1948.
Фурье коэффициенты
Фурье' коэффицие'нты, коэффициенты
разложения функции f (x) , имеющей период 2T , в ряд Фурье (см. Фурье ряд ). Формулы (*) называют формулами Эйлера — Фурье. Непрерывная функция f (x ) однозначно определяется своими коэффициентами Фурье. Ф. к. интегрируемой функции f (x ) стремятся к нулю при n ® ¥, причём скорость их убывания зависит от дифференциальных свойств функции f (x ). Например, если f (x ) имеет k непрерывных производных, то существует такое число с , что |a>n | £ c/n>k , |b>n | £ c/n>k . Ф. к. связаны с f (x ) также следующим неравенством:
(см. Парсеваля равенство ). Ф. к. функции f (x ) по любой нормированной ортогональной на отрезке [а , b ] системе функций j>1 (x ), j>2 (x ),..., j>n (x ),... (см. Ортогональная система функций ) равны
Фурье метод
Фурье' ме'тод, метод решения задач математической физики, основанный на разделении переменных. Предложен для решения задач теории теплопроводности Ж. Фурье и в полной общности сформулирован М. В. Остроградским в 1828. Решение уравнения, удовлетворяющее заданным начальным однородным и краевым условиям, ищется по Ф. м. как суперпозиция решений, удовлетворяющих краевым условиям и представимых в виде произведения функции от пространственных переменных на функцию от времени. Нахождение таких решений связано с разысканием собственных функций и собственных значений некоторых дифференциальных операторов и последующим разложением функций начальных условий по найденным собственным функциям. В частности, разложение функций в ряды и интегралы Фурье (см. Фурье ряд , Фурье интеграл ) связано с применением Ф. м. для изучения задач о колебании струны и о теплопроводности стержня. Например, изучение малых колебаний струны длины l , имеющей закрепленные концы, сводиться к решению уравнения
Выбирая соответствующим образом коэффициенты A>n и B>n , можно добиться того, что функция
будет решением поставленной задачи.
Ряд важных проблем, связанных с применением Ф. м., был решен В. А. Стекловым .
Фурье преобразование
Фурье' преобразова'ние (данной функции), функция, выражающаяся через данную функцию f (x ) формулой:
Если функция f (x ) чётная, то её ф. п. равно
(косинус-преобразование), а если f (x ) — нечётная функция, то
(синус-преобразование). Формулы (1), (2) и (3) обратимы, т. е. для чётных функций
а для нечётных функций
В общем случае имеет место формула
Каждой операции над функциями соответствует операция над их Ф. п., которая во многих случаях проще соответствующей операции над f (x ). Например, Ф. п. f '(x ) является iug (u ). Если
то g (u ) = g>1 (u ) g>2 (u ). Для f (x + а ) Ф. п. является e>iua g (u ), а для c>1 f>1 (x ) + c>2 f>2 (x ) — функция c>1 g>1 (u ) + c>2 g>2 (u ).
Если существует
(теорема Планшереля). Формула (8) является обобщением на Ф. п. формулы Парсеваля (см. Парсеваля равенство ) для рядов Фурье (см. Фурье ряд ). Физический смысл формулы (8) заключается в равенстве энергии некоторого колебания сумме энергий его гармонических компонент. Отображение F : f (x ) ® g (u ) является унитарным оператором в гильбертовом пространстве функций f (x ), — ¥ < x < ¥, с интегрируемым квадратом. Этот оператор может быть представлен также в виде
При некоторых условиях на f (x ) справедлива формула Пуассона
находящая применение в теории тэта-функций .
Если функция f (x ) достаточно быстро убывает, то её Ф. п. можно определить и при некоторых комплексных значениях
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.