Большая Советская Энциклопедия (ЧИ) - [42]

Шрифт
Интервал

(1873), доказавшим трансцендентность числа e , и немецким математиком Ф. Линдеманом (1882), доказавшим трансцендентность числа p и тем самым решившим задачу о квадратуре круга . Во втором — А. Туэ (1909) был предложен метод, с помощью которого он доказал, что в неравенстве Лиувилля к алгебраическому числу нельзя подойти существенно ближе чем Qn/ 2. Следствием этого явилась теорема Туэ о конечности числа решений в целых числах х и у уравнения

a>0 x>n + a>1 x>n>¾1 y+... + a>n>¾1 xy>n>¾1 + a>n y>n ,

  где a>0 , a>1 ,... , a>n , А — целые числа, n ³ 3.

  Дальнейшее изучение простых чисел привело к новому методу в Ч. т., связанному с функцией x (s ). Б. Риман доказал, что дзета-функция x (s ) аналитически продолжается на всю плоскость комплексного переменного, является аналитической в каждой точке плоскости, за исключением s = 1, где она имеет полюс первого порядка с вычетом, равным 1, удовлетворяет функциональному уравнению x(s )= x(1¾s ), где

  Г (s ) гамма-функция, и имеет бесконечно много нулей в полосе 0 £ Res = 1 (эти нули называют нетривиальными, а полосу — критической). Он установил тесную связь между нетривиальными нулями x (s ) и асимптотическим поведением p(х ). Изучение асимптотической формулы для функции Чебышева

  где L(n ) = lnp , если n = р L(n )= 0, если n ¹ p>k , эквивалентно такой же задаче для функции p(х ). Функция Y(х ) может быть выражена через интеграл от производящей функции — x¢(s )/ x(s ):

  Б. Риман высказал гипотезу, что все нетривиальные нули x (s ) лежат на прямой Res = >1 />2 , из чего следует, что

y(x )=x + O (

ln>2x ),

  Из справедливости любой из последних формул следует гипотеза Римана. По аналогичной схеме были изучены L -ряды Дирихле. В 1896 Ш. Ла Валле Пуссен и Ж. Адамар доказали, что x(s ) ¹ 0 в области Res ³ 1, откуда следовала формула (асимптотический закон распределения простых чисел)

  Кроме этого, Ш. Ла Валле Пуссен доказал, что x(s ) ¹ 0 в области

  и что

  где с и c>1 — положительные постоянные. Такой же результат был получен им и для простых чисел в арифметических прогрессиях: если p(х , k , l ) число простых чисел вида kn + 1, n £ х , k и l— взаимно простые числа, то

  Метод получения асимптотических формул для p(х ), Y(х ), p(х , k , l ), названный методом комплексного интегрирования, нашёл многочисленные применения. Основой этого метода служит формула

  Теория квадратичных форм, начатая работами Л. Эйлера, К. Гаусса, П. Дирихле, продолжала своё развитие в работах А. Н. Коркина , Е. И. Золотарёва и А. А. Маркова . В частности, А. Н. Коркин и Е. И. Золотарёв доказали теорему: переменным любой положительной кватернарной квадратичной формы определителя D можно придать такие целые значения, что значение формы не будет превосходить величины

, и существуют такие формы, минимумы которых равны
. Примером такой формы является следующая:

.

  Исследования А. А. Маркова относились к изучению минимумов бинарных квадратичных форм положительного определителя и привели к целому ряду новых открытий.

  Проблемы целых точек в областях на плоскости получили своё дальнейшее развитие в трудах Г. Ф. Вороного , создавшего (1903) метод, с помощью которого доказано, что остаточный член в асимптотической формуле Дирихле для числа целых точек под гиперболой имеет порядок корня кубического из главного члена. Позднее (1906) метод Вороного был перенесён В. Серпиньским на проблему Гаусса целых точек в круге с тем же результатом. В это же время были предприняты попытки найти решения аддитивных проблем Ч. т. и, в частности, решить Варинга проблему . В 1909 она была решена Д. Гильбертом .

  Второе, третье и четвёртое десятилетия 20 в. были исключительно богаты новыми идеями и методами в Ч. т. Г. Вейль , решая задачи, связанные с устойчивостью Солнечной системы, пришёл к понятию равномерного распределения дробных долей целочисленных функций: дробные доли действительнозначной функции F (x ) равномерно распределены на [0,1) при х= 1,2,3.,.., если число попаданий дробных долей F (x ) на любой интервал из [0.1) пропорционально длине этого интервала. Он доказал, что для равномерности распределения дробных долей F (x ) необходимо и достаточно выполнение соотношения:

,

  при любом фиксированном ½m ½>0, и получил нетривиальные оценки ½S (F )½ в случае, когда F (x ) многочлен, старший коэффициент которого есть иррациональное число. И. М. Виноградов, изучая распределение значений символа Лежандра на отрезках малой длины по сравнению с модулем, доказал (1914) неравенство

, X > 0,

  из которого следует, что квадратичных вычетов и невычетов на любом отрезке, длина которого чуть больше

, асимптотически поровну. Кроме того, он высказал гипотезу, что это будет верно при Х > р>e , где e > 0 — сколь угодно малое число. В 1917 И. М. Виноградов доказал, что число целых точек в области 0 < y £ f (x ), a < x £ b , при определённых ограничениях на порядок роста второй производной f (x ), равно площади этой области с точностью до слагаемого порядка корня кубического из главного члена. Позднее чешским математиком В. Ярником установлено, что точность этой формулы при сделанных предположениях относительно


Еще от автора БСЭ
Большая Советская Энциклопедия (--)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ОК)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ГЛ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (А)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (НУ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (БП)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Большая Советская Энциклопедия (ЧЕ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ЧТ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ЧР)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ЧО)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ЦЗ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ЦА)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.