Бог и Мультивселенная. Расширенное понятие космоса - [96]
Однако при такой массе количество нейтрино, требуемое, чтобы обеспечить достаточную часть критической плотности, должно быть порядка 10>90, что крайне маловероятно. Для сравнения: количество реликтовых нейтрино «всего лишь» 10>88, примерно столько же, сколько фотонов в реликтовом излучении. Атомов в 1 млрд. раз меньше. Таким образом, гипотеза темной материи, состоящей из знакомых нам легких нейтрино, в свете последних данных о РИ по большей части исключается и нам нужно искать новых кандидатов на роль ее частиц. Правильным порядком действий в такой ситуации будет вначале исследовать те возможности, которые требуют привлечения как можно меньшего числа новых гипотез.
В то время как в рамках стандартной модели кандидатов не осталось, существуют два варианта, которые требуют не полного пересмотра теории, но лишь небольшого ее расширения, — это стерильные нейтрино и аксионы.
После открытия массы известных нам нейтрино стало ясно, что должен существовать еще один вид нейтрино, до сих пор не обнаруженный. Считается, что эти дополнительные нейтрино стерильны, то есть взаимодействуют только гравитационно или в лучшем случае очень слабо. Если эти кандидаты на роль частиц темной материи обладают массой, поддающейся измерению, скажем, большей, чем несколько сотен электрон-вольт, то они все еще вписываются в физику стандартной модели, слегка расширенной, чтобы включить параметры, описывающие эти состояния>{278}.
В период написания этой книги проводился ряд новых наблюдений, результаты которых внезапно выдвинули стерильные нейтрино на передний план программы поиска темной материи. Об этом мы поговорим в главе 14.
Еще один гипотетический кандидат на роль темной материи, все еще вписывающийся в основные положения стандартной модели, — это аксион, частица, предложенная еще в 1977 году для решения некоторых специальных проблем квантовой хромодинамики. По оценкам ученых, он должен иметь массу менее 1 эВ.
ВИМП-частицы и суперсимметрия
Других кандидатов на роль холодной темной материи в рамках минимально измененной стандартной модели не существует. Если это не стерильные нейтрино и не аксионы, то это должно быть что-то абсолютно новое. Такие частицы объединяют под общим названием «вимп-частицы» (от англ. WIMP — Weakly Interacting Massive Particle, что означает «слабовзаимодействующие массивные частицы»). Вероятнее всего, они должны быть нерелятивистскими и иметь большую массу. Долго фаворитом была одна из частиц, предсказанных в рамках расширенной версии стандартной модели, включающей суперсимметрию (SUSY), описанную в главе 11. Общее название вимп-частиц в рамках теорий суперсимметрии — нейтралино. Были предложены четыре возможных типа нейтралино, которые являются фермионами-суперпартнерами калибровочных бозонов стандартной модели.
Ученые не сомневались в том, что во время первых запусков Большого адронного коллайдера им удастся обнаружить данные, подтверждающие теорию суперсимметрии. Однако этого не произошло. Значительная часть теоретических изысканий последних 40 лет основывалась на суперсимметрии, в частности большинство теорий квантовой гравитации (теория супергравитации) и М-теория. Если теория суперсимметрии не подтвердится во время следующего запуска БАК, который начнется в 2015 году, все эти теории, вполне возможно, ожидает крах.
Если это случится, многие физики будут разочарованы, но отнюдь не все, включая меня. Серьезные открытия в физике обычно приводят к появлению более простых теорий с меньшим количеством переменных параметров. Теория суперсимметрии увеличивает количество настраиваемых параметров примерно вдвое, а М-теория имеет 10>500 различных вариаций>{279}. Несмотря на всю их математическую красоту, в моих глазах экспериментатора это уродует их.
Но проблемы, с которыми столкнулись космологи в конце второго тысячелетия нашей эры, на этом не заканчиваются. К 1998 году было установлено, что темная материя, какой бы ни была ее природа, составляет в лучшем случае около 25% критической плотности Вселенной. Недоставало еще трех четвертей массы, требуемой инфляционной моделью. Вновь теория инфляции оказалась на грани опровержения. Но природа и тут пришла ей на помощь.
Темная энергия
С тех пор как Хабблв 1929 году впервые построил график зависимости скоростей разбегания галактик от расстояния до них, астрономы непрерывно совершенствовали свои измерения, однако тенденция к линейной зависимости сохранялась. Это значит, что угловой коэффициент H, которому соответствует скорость расширения Вселенной, оказался постоянным. На самом деле его и назвали постоянной Хаббла.
Однако нет никаких причин, по которым Н, скорость расширения Вселенной, должна быть постоянной. Ожидалось, что в какой-то момент график начнет загибаться книзу по мере того, как взаимное гравитационное притяжение будет замедлять расширение. То есть расширение Вселенной должно замедляться.
Но в 1995 году космологи Лоуренс Краусс и Майкл Тернер отметили, что, согласно существующим на тот момент данным, во Вселенной действует положительная космологическая постоянная, которая на деле вносит свой вклад в критическую плотность Вселенной. Они отметили, что вследствие этого должно происходить ускоряющееся расширение, проявляющееся в увеличении скоростей разбегания галактик на больших расстояниях, то есть график начнет загибаться вверх
В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.
В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.
«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.
Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.
Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.