Бог и Мультивселенная. Расширенное понятие космоса - [43]

Шрифт
Интервал

Через год вы заметите, что начала формироваться интерференционная картина. Обратите внимание: не стоит говорить, что фотоны интерферируют друг с другом, как часто описывают этот эффект.

Если вы возразите мне, назвав один фотон в день лучом, то где вы проведете границу, у которой внезапно появляется этот луч? А один в час? Один в секунду? Один в наносекунду?

Позвольте мне прояснить этот момент. Будет неправильно говорить: «Этот фотон имеет частоту f» или «Этот электрон имеет длину волны λ». Правильные формулировки звучат так: «Этот фотон является частью группы фотонов, которые статистически можно описать как волну с частотой f» и «Этот электрон является частью группы электронов, которые статистически можно описать как волну с длиной волны λ».

В 1926 году австрийский физик Эрвин Шрёдингер разработал математическую теорию, названную волновой механикой, в которой он связал частицы с комплексным числом, называемым волновой функцией[9]. В том же году немецкий физик Макс Борн предложил интерпретацию, ставшую теперь общепринятой, согласно которой квадрат модуля волновой функции определяет вероятность обнаружения частицы в определенной точке пространства в пределах заданного объема и в определенный момент времени. Квантовая механика не позволяет предсказать поведение отдельной частицы в согласовании с приведенной ранее интерпретацией корпускулярно-волнового дуализма.

Чуть раньше, в 1925 году, немецкий физик Вернер Гейзенберг заложил основы науки, позже названной квантовой механикой, которая не работает с волнами, используя вместо этого матричную алгебру. Вначале шли споры о том, чья формулировка лучше. Шрёдингер доказал, что они математически эквивалентны. Формулировки Гейзенберга и Шрёдингера применяются только к нерелятивистским частицам, то есть тем, которые движутся на скоростях, значительно меньших, чем скорость света. Это значит, что с их помощью можно описать медленные электроны, но не фотоны.

В 1927 году британский физик Поль Дирак, чей гений сопоставим с эйнштейновским, сформулировал квантовую теорию фотонов. В следующем году он разработал релятивистскую теорию электронов, которая предсказывала существование антиматерии. В 1932 году американский физик Карл Андерсон сообщил, что ему удалось обнаружить в космическом излучении частицы, которые выглядели как электроны, но отклонялись в противоположном направлении в магнитном поле, а значит, имели положительный электрический заряд. Андерсон связал эти частицы с антиматерией Дирака и назвал антиэлектроны позитронами.

В 1930 году Дирак опубликовал основополагающую работу по квантовой механике — «Принципы квантовой механики»>{103} В этой книге, выдержавшей с тех пор множество редакций и изданий, он избавился от понятия волновой функции, заменив волновую механику и матричную алгебру более мощным инструментом — линейной векторной алгеброй. Хотя большинство химиков и те из физиков, которые имеют дело с низкоэнергетическими процессами, могут обойтись менее замысловатой волновой механикой Шрёдингера, квантовая механика Дирака необходима для понимания поведения элементарных частиц и высокоэнергетических процессов вообще.

В то время как специальную теорию относительности благополучно привели в согласие с квантовой механикой, об общей теории относительности сказать того же нельзя. В частности — и это самое важное для нашей космологической истории — общая теория относительности неприменима к первым моментам существования нашей Вселенной, когда квантовые эффекты преобладали. Как мы вскоре увидим, это не удержало религиозных апологетов от использования аргументов общей теории относительности для доказательства божественного сотворения Вселенной.


Шкала Планка

Теперь мне хотелось бы рассказать об идее, важность которой будет все нарастать по мере нашего дальнейшего углубления в космологию. Как я уже подчеркивал, всякая физическая величина, имеющая непосредственное отношение к экспериментальному наблюдению, с практической точки зрения определяется тем, как ее измеряют с помощью точно подобранного измерительного оборудования. Мы увидели, что как пространственный, так и временной интервалы зависят от того, что измеряют часы, при этом расстояние между двумя точками зависит от времени, за которое свет проходит между этими точками в вакууме.

Можно доказать, что наименьший временной промежуток, поддающийся измерению, планковское время, равен 5,391∙10>-44 с, а кратчайшее расстояние, которое можно измерить, — планковская длина равна 1,616∙10>-35м>{104}.

Еще одна достойная упоминания величина называется планковскои массой, и она равна 2,177∙10>-8 кг. Радиус Шварцшильда для сферы планковскои массы равен двум планковским длинам, из чего следует, что такая сфера будет черной дырой (см. ранее раздел о черных дырах). Планковская энергия определяется как энергия покоя тела планковскои массы и равна 1,221∙10>28 эВ (электрон-вольт). Электрон-вольт представляет собой количество энергии, полученной электроном при прохождении через разность потенциалов 1 В. В этой книге вы еще не раз встретите эту единицу измерения.


Рекомендуем почитать
Извечные тайны неба

Очерки о путях познания Вселенной. В увлекательной, доходчивой форме с широким привлечением исторического материала рассказывается о достижениях современной астрономии и космонавтики, о методах астрономических исследований, о тесных связях астрономии с механикой, математикой, физикой, науками о Земле. Большое место уделяется научным данным, полученным благодаря прогрессу ракетно-космической техники. История астрономии прослеживается в связи с общим развитием научного творчества в различные исторические эпохи.


Серебристые облака и их наблюдение

В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.


Астронавт. Необычайное путешествие в поисках тайн Вселенной

В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».


Сказка об астрономе Слайфере

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.


Нереальная реальность. Путешествие по квантовой петле

«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.


Жизнь на грани

Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.


Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.