Бог и Мультивселенная. Расширенное понятие космоса - [102]

Шрифт
Интервал

Темная материя тоже расширялась. Когда она остыла, то стала формировать сгустки, вследствие чего менее массивная атомная материя также начала сгущаться вместе с ней. Поскольку темная материя слабо взаимодействует с остальным веществом, ее сгущение не привело к какой-либо потере энергии. Атомы же чаще сталкивались друг с другом, вследствие чего энергия рассеивалась и они остывали быстрее, чем это происходило бы вследствие одного только расширения Вселенной. Благодаря этому собственной гравитации атомов вместе с гравитацией темной материи стало еще проще сжимать атомное вещество все сильнее. Таким образом, внутри более холодной окружающей среды формировались горячие плотные ядра. В итоге температура и давление этих ядер достигли уровня, достаточного для того, чтобы запустилась реакция термоядерного синтеза и начался процесс формирования звезд.

Однако они были не очень похожи на звезды в современной Вселенной. Самые первые звезды были примерно в 100 раз массивнее сегодняшних и практически полностью состояли из водорода и гелия. Как следствие, они имели очень высокую температуру и излучали ультрафиолетовый свет, который ионизировал окружающую среду. Этот процесс называется реионизацией.

Первые галактики, образовавшиеся, когда эти звезды сформировали скопления, представляли собой квазары и другие формы активных галактик со сверхмассивными черными дырами в центре, интенсивное излучение которых также вносило свой вклад в реионизацию.

Итак, в некогда темной электрически нейтральной Вселенной снова появились заряженные частицы. Хотя их плотность была намного меньше, чем до момента последнего рассеяния, ее было достаточно для того, чтобы пространство частично утратило прозрачность, которую приобрело вместе с потерей заряда. Благодаря этому туману, образовавшемуся вследствие реионизации, интенсивность реликтового излучения, которое мы в конечном итоге наблюдаем на Земле, снизилась. В модели LCDM этот процесс описывается параметром, называемым оптической толщей на момент реионизации т, который характеризует густоту тумана. На основании этого параметра ученые смогли рассчитать, когда произошла реионизация. Это случилось примерно через 400 млн. лет после Большого взрыва.


Космическая обсерватория «Планк»

Четырнадцатого мая 2009 года с космодрома Гвианского космического центра, расположенного во Французской Гвиане, был запущен «Планк» — астрономический спутник Европейского космического агентства. Эта космическая обсерватория начала собирать данные в феврале 2010 года. Первые результаты были опубликованы в марте 2013 года. Угловой спектр мощности реликтового излучения по данным обсерватории «Планк» изображен на рис. 14.3>{298}.

СМИ подняли шумиху вокруг того факта, что значения некоторых параметров отличались от ранее принятых, в частности, несколько увеличился предполагаемый возраст Вселенной. На самом деле статистически значимых различий в числах не было. Особенно прошлись журналисты по «противоречиям» между данными, полученными обсерваторией «Планк» и космическим телескопом «Хаббл», а также другими аппаратами, исследовавшими галактики, сформировавшиеся спустя долгое время после образования РИ, в момент последнего рассеяния. В частности, согласно модели, описанной ранее и согласующейся с данными, полученными спутником «Планк», масса галактических скоплений составляет порядка 80% от значения, полученного в результате их панорамного обзора>{299}. Мы вскоре вернемся к этому.

Рис. 14.3. Угловой спектр мощности РИ, согласно данным обсерватории «Планк», опубликован в 2013 году. На этом графике можно увидеть полную гармоническую структуру, определенную с впечатляющей точностью. Обратите внимание на семь выпуклых участков этой кривой. В табл. 14.1 перечислены избранные параметры, полученные путем аппроксимации данных обсерватории «Планк» и космического аппарата WMAP, а также других наблюдений, которые нет нужды перечислять. Модель LCDM с шестью параметрами, описанная ранее, хорошо согласуется с данными, однако уже проводятся испытания расширенных моделей, содержащих большее количество переменных параметров. Изображение предоставлено: Planck Collaboration, Ade P. A. R. etal. Planck 2013 Results. I. Overview of Products and Scientific Results // arXiv preprint arXiv: 1303.5062 (2013) 
Таблица 14.1.
Избранные параметры, полученные путем аппроксимации данных обсерватории «Планк» и космического аппарата WMAP, а также других наблюдений

t>0 … Возраст Вселенной, млрд. лет … 13,798 ± 0,037

H>0 … Постоянная Хаббла, км/с/Мпк … 67,80 ± 0,77

Ω>b … Относительная барионная плотность … 0,04816 ±0,00052

Ω>c … Относительная плотность холодной темной материи … 0,2582 ± 0,0037

Ω>L … Относительная плотность темной энергии … 0,692 ± 0,010

n … Спектральный индекс первичных флуктуации … 0,9608 ±0,0054

τ … Оптическая толща реионизации … 0,092 ± 0,013

Ω>k …Плотность энергии пространственной кривизны, доверительная вероятность 95% … -0,0005 ± 0,0066

Σm … Сумма масс нейтрино, эВ, доверительная вероятность 95% … <0,23

N>eff … Эффективное число нейтрино, доверительная вероятность 95% … 3,30 ± 0,53


Рекомендуем почитать
99 секретов астрономии

В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.


Нереальная реальность. Путешествие по квантовой петле

«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.


Жизнь на грани

Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.


Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.