Блокчейн. Принципы и основы - [16]

Шрифт
Интервал

Квантовые вычисления

Возможности взлома криптографических алгоритмов, а именно – попытки восстановить секретный ключ из открытого, всегда были ограничены вычислительной мощностью компьютеров. Производительность процессоров с годами постоянно росла, но вместе с ней также росла и криптостойкость алгоритмов. Иными словами, задача взлома с каждым днем пропорционально усложнялась, и казалось, что этой гонке не будет конца. Однако за последние годы перед технологами, производящими электронные компоненты на интегральных схемах, в первую очередь микропроцессоры, начали явственно очерчиваться физические пределы дальнейшего уменьшения размера транзистора как базового элемента электронной схемы. По состоянию на 2018 год позднейшие разработки в области полупроводниковых технологий позволяют массово создавать микропроцессоры на базе 10-нанометрового технологического процесса. По крайней мере, компания Samsung уже использует эту технологию в своих смартфонах, в то время как компания Intel все еще продолжает делать процессоры для персональных компьютеров по технологии 14 нм. В любом случае технология изготовления транзистора постепенно приближается к атомным размерностям, при том, что одного атома явно недостаточно, чтобы из него сделать транзистор.

Последние новости из мира науки сообщают, что ученым удалось создать транзистор всего из семи атомов, и уменьшать это число далее уже едва ли возможно. Дело в том, что размер одного атома кремния оценивают в 0,2 нанометра, но одновременно с этим считается, что из-за физических ограничений минимально возможный размер затвора кремниевого транзистора составляет 5 нанометров. О чем это говорит? О том, что небезызвестный закон Мура, согласно которому производительность процессоров удваивается каждые 18 месяцев, практически достиг своего физического предела. Что, в свою очередь, отразится на максимально возможной вычислительной мощности компьютеров, которая также перестанет пропорционально увеличиваться, как это происходило ранее. В результате прогресс во взломе криптостойких алгоритмов шифрования постепенно сойдет на нет, и все текущие проекты, построенные на базе этих алгоритмов, смогут наконец почувствовать себя в безопасности. Однако так ли это на самом деле?

Если классическая технология создания компьютеров упирается в свой предел развития, значит, следует искать решения по дальнейшему увеличению производительности в принципиально новых научно-технологических направлениях. Наиболее перспективной областью в части поиска возможностей для существенного роста производительности вычислений в настоящий момент считаются так называемые квантовые компьютеры.

Квантовые компьютеры – это вычислительные устройства, существенно отличающиеся от привычной для нас архитектуры двоичной логики. В классическом представлении мельчайшая ячейка памяти, называемая битом, может принимать устойчивые значения либо нуля, либо единицы. В квантовом же компьютере биты имеют квантовую природу и называются «кубитами». В роли таких кубитов могут выступать, например, направления спинов субатомных частиц, а также различные состояния внешних электронов или фотонов. Чтобы не углубляться в основы квантовой механики, мы не станем подробно рассматривать физическое устройство квантового компьютера, а отметим лишь некоторые свойства, отличающие его от компьютера классического.

В 1931 году австрийский физик Эрвин Шредингер предложил мысленный эксперимент, в котором он помещал условного кота в стальную камеру, где находилось устройство с радиоактивным атомным ядром, а также колба с ядовитым газом. По условиям эксперимента атомное ядро в течение часа может ожидать распад с вероятностью 50 %. Если это происходит, то срабатывает механизм, разбивающий колбу, после чего кот погибает. Но если распад ядра все же не случился, тогда кот остается цел и невредим. Смысл этого эксперимента в том, что внешний наблюдатель никогда точно не знает, распалось ли ядро и жив ли кот, до тех пор, пока не откроет сам ящик, а до этого момента считается, что кот и жив, и мертв одновременно.

Понятно, что ни одна сущность в нашем мире не может находиться в двух разных состояниях в один и тот же момент времени. Поэтому правильнее было бы сказать, что кот находится в так называемом состоянии «суперпозиции», в котором все возможные варианты состояния принимаются с различной степенью вероятности. При этом сумма вероятностей всех возможных состояний обязательно должна быть равна 100 %. То же самое можно отнести и к принципу работы кубита квантового компьютера – он таким же образом может находиться в состоянии суперпозиции, принимая одновременно значения логического нуля и единицы. До момента непосредственного измерения состояния кубита его точное значение наблюдателю неизвестно, а после измерения и получения результата кубит сразу же фиксируется в однозначном состоянии нуля или единицы. Это на первый взгляд странное свойство кубитов оказалось очень полезным в организации параллельных расчетов сложных вычислительных задач, включая криптографические алгоритмы.

Еще одна интересная особенность кубитов состоит в том, что вместе они могут находиться в состоянии так называемой «квантовой запутанности», когда изменение состояния одного кубита автоматически влечет за собой изменение состояния другого, связанного с ним, на противоположное. Однако организовать квантовую запутанность большого числа кубитов между собой технологически очень сложно, поскольку их необходимо тщательно изолировать от любых видов помех в окружающей среде. На текущий момент ведущим производителям квантовых компьютеров, таким, например, как Google, удалось удержать в связанном состоянии целых 72 кубита, что пока является мировым рекордом среди подобных разработок. Много или мало 72 кубита для решения задач взлома хотя бы, например, алгоритма факторизации RSA? Если рассматривать n обычных бит, то из 2


Рекомендуем почитать
Кибербезопасность в условиях электронного банкинга. Практическое пособие

В книге рассматриваются вопросы, связанные как с обеспечением кибербезопасности в условиях применения систем электронного банкинга, так и с анализом источников рисков, возникающих при использовании технологии дистанционного банковского обслуживания. Описаны основные принципы управления рисками электронного банкинга. Рассмотрены риски, возникающие в кредитных организациях при внедрении систем интернет-банкинга, и риски легализации преступных доходов при использовании электронных денег (включая описание вариантов использования интернет-трейдинга как инструмента отмывания денежных средств на фондовых биржах)


Доходное инвестирование

Что я могу ответить? Я такой же как вы, только начал инвестировать на несколько лет раньше (с 2002 года). Я начинал с "маленьких денег", но уже живу вместе со своей семьей на доходы со своего инвестиционного капитала. Я люблю докапываться до сути вещей и эта моя страсть может быть кому-нибудь полезна кроме меня. А я люблю быть полезным, потому что люблю людей и люблю пользу. Я люблю писать – поэтому я все это и пишу. Если быть кратким: я не собираюсь ни в этой рубрике, ни в целом на вокруг да около, ни в своих консультациях кого-то чему-то учить.


Инвестор за выходные. Руководство по созданию пассивного дохода

Вокруг инвестиций много мифов. Одни говорят, что это слишком сложно и 90 % инвесторов теряют деньги. Другие убеждают в обратном: инвестировать можно безопасно, никакие знания не нужны, а начать стоило еще вчера. Правда, как всегда, посередине: чтобы не прогореть в самом начале, стоит познакомиться с основными правилами в мире инвестиций. Но это действительно несложно – вы справитесь за несколько дней. Автор книги «Инвестор за выходные» Семён Кибало к 30 годам добился полной финансовой независимости благодаря пассивному инвестированию.


Фондовый рынок. Курс для начинающих

Эта книга – великолепное учебное пособие для начинающих углубленное изучение фондовых рынков. Она дает общее представление обо всех аспектах их работы и адресована как студентам и преподавателям экономических вузов, так и начинающим инвесторам, специалистам брокерских фирм и банков. Несмотря на сложность финансовых рынков, все большему числу людей в силу профессиональных потребностей или личного интереса необходимы практические знания об их инструментах, структуре, игроках, регулировании и других особенностях.


Стартап. Как начать с нуля и изменить мир

Александр Горный отобрал 300 самых показательных бизнесов со всего мира, проанализировал успехи и провалы, которые станут незаменимым учебником и источником вдохновения для предпринимателей и инвесторов. Экспертная оценка Александра разовьет в вас бизнес-чутье, которое поможет сориентироваться в потоке идей и проектов.


Игра Люцифера. Как один человек раскрыл «глобальный заговор», вышел из тюрьмы и стал миллионером

Брэдли Биркенфельд — тот самый человек, который первым раскрыл всю подноготную «черного» швейцарского банковского бизнеса. Книга «Игра Люцифера» рассказывает историю этого великого разоблачения.Показания Брэдли Биркенфельда привели к широкомасштабному расследованию деятельности швейцарского банка UBS и других банков, которые способствовали сокрытию от американского правительства огромных сумм налогов. Благодаря Биркенфельду казначейство США смогло вернуть в страну более 12 миллиардов долларов в виде налогов, штрафов и прочих санкций, наложенных на американских налоговых мошенников, — но сам он, как бывший сотрудник банка UBS, был осужден на 40 месяцев тюремного заключения, из которых отбыл 31 месяц.