Блокчейн. Принципы и основы - [12]

Шрифт
Интервал

Проблема факторизации чисел занимала умы ученых еще сотни лет назад. Одним из первых, кто занялся этой задачей, стал французский математик Пьер де Ферма. Еще в 1643 году он предложил свой метод факторизации, который используется для криптоанализа шифров RSA и в наши дни. Понятно, что для любого алгоритма шифрования всегда найдутся люди, которые будут искать возможности для эффективной атаки на него. Кто-то в преступных целях, а кто-то в научных – чтобы исследовать криптостойкость алгоритма и защитить проекты, базирующиеся на данном решении. Еще в середине 2000-х гг. стали появляться сообщения о том, что группа ученых того или иного университета взломала сначала 512-битный, а затем и 1024-битный ключ RSA. При этом они не задействовали какую-то исключительную вычислительную мощность, а для решения задачи им потребовалось вполне разумное время. Конечно, ни один, даже самый мощный компьютер, с такой вычислительной нагрузкой в одиночку не справится, поэтому для решения подобных задач компьютеры обычно объединяют в специальные вычислительные кластеры.

За последние десять лет вычислительная мощность компьютеров заметно выросла. Согласно закону Мура, производительность компьютерных процессоров удваивается каждые 18 месяцев, поэтому для поддержания криптостойкости алгоритма RSA в различных технологических решениях необходимо постоянно увеличивать длину открытого ключа. Поскольку до бесконечности этот процесс продолжаться не может, от данного алгоритма стали отказываться и переходить к более прогрессивным решениям, в которых достаточная криптостойкость поддерживается для ключей с разумной разрядностью – в пределах 256–1024 бит. Одним из таких стал алгоритм формирования цифровой подписи DSA, построенный на модели дискретного логарифмирования. В данном алгоритме используется так называемая модульная арифметика, которая представляет собой задачу поиска степени, в которую необходимо возвести заданное число, чтобы, разделив результат по модулю на другое заданное число, получить желаемый остаток от деления. Чтобы стало понятнее, рассмотрим следующий пример:



Деление по модулю – это обычное деление целых чисел друг на друга с целым остатком. Подобную арифметическую операцию проходят в младших классах школы, непосредственно перед изучением дробей. После чего про деление с остатком благополучно забывают и не вспоминают до университетского курса высшей математики. Где неожиданно выясняется, что деление с остатком на самом деле играет довольно важную роль в теории чисел и алгебре. В нашем примере мы должны определить, в какую степень нам надо возвести тройку, чтобы потом, разделив полученный результат по модулю на 17, получить число 13 в качестве остатка от деления. Правильный ответ: x = 4. То есть 3>4 = 81, 81/17 = 4 + остаток 13 (проверка: 4 x 17 = 68 + 13 = 81). Довольно просто, не правда ли? Возводя тройку в различные степени x от единицы и более, а затем деля по модулю полученный результат на 17, мы будем каждый раз получать различные остатки от деления. Однако у них будет одно общее свойство – все эти остатки будут находиться в диапазоне от 1 до 16 включительно, но выстраиваться отнюдь не по порядку (по мере последовательного возрастания степени x). Множество этих чисел называется кольцом вычетов. Кольцом, потому что остатки будут постоянно повторяться для разных показателей степени, в которую возводится базовое число. А теперь представим, что мы оперируем не одно-двухразрядными, а очень большими числами. В этих случаях, если степень заданного числа нам заранее неизвестна, то задача ее нахождения для конкретных величин остатков становится очень и очень сложной. Именно эта сложность и лежит в основе алгоритма DSA.

Как уже упоминалось выше, все подобные алгоритмы шифрования построены на принципе, при котором задача в одну сторону решается очень быстро и просто, а в обратную – исключительно сложно. И алгоритм DSA – не исключение. Если мы будем решать задачу для больших чисел путем простого перебора различных значений, то данный метод будет работать очень медленно. Поэтому вместо обычного перебора были разработаны алгоритмы, которые решают эту задачу гораздо эффективнее. Настолько эффективно, что, принимая во внимание постоянное увеличение производительности современных компьютеров, математики вынуждены были задуматься о необходимости повышения сложности алгоритма шифрования. В противном случае они могли бы столкнуться с проблемой массового взлома шифров уже в относительно недалеком будущем.

Чтобы придать задаче существенное усложнение, в 1985 году был разработан алгоритм дискретного логарифмирования на базе эллиптических кривых (алгоритм ECDSA). О чем в данном случае идет речь и что это за кривая? Эллиптическая кривая – это множество точек, описываемое уравнением y>2 = x>3 + ax + b. То есть, по сравнению с алгоритмом DSA, операции совершаются не над кольцом целых чисел, а над множеством точек эллиптической кривой, что существенно усложняет задачу восстановления закрытого ключа из открытого. Вот пример обычной эллиптической кривой:



На множестве точек эллиптической кривой могут выбираться такие точки, для которых возможно совершить операцию сложения самих с собой и получить результат в виде другой точки на этой же кривой. То есть решить уравнение


Рекомендуем почитать
Инвестор за выходные. Руководство по созданию пассивного дохода

Вокруг инвестиций много мифов. Одни говорят, что это слишком сложно и 90 % инвесторов теряют деньги. Другие убеждают в обратном: инвестировать можно безопасно, никакие знания не нужны, а начать стоило еще вчера. Правда, как всегда, посередине: чтобы не прогореть в самом начале, стоит познакомиться с основными правилами в мире инвестиций. Но это действительно несложно – вы справитесь за несколько дней. Автор книги «Инвестор за выходные» Семён Кибало к 30 годам добился полной финансовой независимости благодаря пассивному инвестированию.


Предоплаченные инструменты розничных платежей – от дорожного чека до электронных денег

Издание дает читателю системное описание развития и текущего состояния на рынке предоплаченных инструментов розничных платежей. В издании представлены, как традиционные предоплаченные продукты, такие как дорожные чеки, так и инновационные продукты, например электронные деньги. Широко освещен международный опыт использования инновационных платежных продуктов. Также приведены примеры регулирования этих систем в разных странах как ближнего, так и дальнего зарубежья, а также юридические основы использования систем предоплаченных платежных продуктов.


Банковское дело

В книге кратко изложены ответы на основные вопросы темы «Банковское дело». Издание поможет систематизировать знания, полученные на лекциях и семинарах, подготовиться к сдаче экзамена или зачета.Пособие адресовано студентам высших и средних образовательных учреждений, а также всем интересующимся данной тематикой.


Банковский учет и операционная техника

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Банковские операции

В курсе в краткой и доступной форме рассмотрены все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Банковские операции». В курсе впервые в отечественной литературе по банковскому делу подробно освещены вопросы: кредитного консалтинга, ритэйла, элитного банковского обслуживания, карьеры в банке и технике трудоустройства, как получить кредит, схема создания кредитной организации и другие актуальные темы.Автор книги, Шевчук Денис, имеет опыт работы в банках, коммерческих и государственных структурах на руководящих должностях, курирует программу «Кредитный консалтинг» в должности Заместителя генерального директора «Кредитный брокер INTERFINANCE» (ИПОТЕКА КРЕДИТОВАНИЕ БИЗНЕСА) (www.denisсredit.ru), имеет высшее экономическое и юридическое образование.


Государственные и муниципальные финансы: конспект лекций

Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования.Доступность и краткость изложения позволяют быстро и легко получить основные знания по предмету, подготовиться и успешно сдать зачет и экзамен.Рассматриваются понятие, сущность государственного управления, типы и формы государства, органы государственной власти, структура и компетенция органов законодательной и исполнительной власти Российской Федерации, судебная власть, система органов местного самоуправления и многое другое.Для студентов экономических вузов и колледжей, а также тех, кто самостоятельно изучает данный предмет.