Биотехнология: что это такое? - [83]

Шрифт
Интервал

Потребности новой отрасли диктовали высшим учебным заведениям свои условия и темпы подготовки специалистов, стимулируя открытие все новых заведений и отделений при университетах. В ФРГ, например, и до биотехнологического бума существовала довольно разветвленная сеть лабораторий по проблемам общей и прикладной микробиологии, однако уже в начале 1974 года здесь начинают функционировать новые институты и отделения при университетах, специализирующихся по проблемам новой биотехнологии. В крупнейших городах страны — Брауншвейге, Мюнстере, Дортмунде, Ганновере и т. д. — открываются специализированные центры, в которых проходит обучение практически весь научный и технический состав биотехнологической науки и индустрии ФРГ.

Но сколь ни специфично решается в каждом государстве проблема подготовки нужных кадров, задача системы, ее обслуживающей, неизменно сводится к обучению биотехнологов мгновенному приспособлению к меняющейся обстановке, проявлению пластичности в полном соответствии с меняющейся конъюнктурой.

На мой взгляд, это бесценное для становления любого приоритетного направления НТП свойство в большей степени присуще Японии, в которой разнообразие сфер деятельности давно стало главным условием экономической стабильности биотехнологических фирм.

Или взять те же самые США. Глубокая биологизация знаний, получаемых в этой стране выпускником университета или колледжа, открывает ему широкий выбор будущей деятельности. После прохождения основного курса ему оказывается достаточно небольшой специализации — и он может успешно работать в медицине или в ферментационной промышленности.

Сколь мудра такая система подготовки, можно судить по тому положению, которое наблюдается в современной химии, 85 процентов всех промышленных процессов которой основано на катализе.

Каталитические процессы (а на их долю приходится 70 процентов всей выпускаемой химической продукции), как известно, отличаются величайшей селективностью (избирательностью), они высокопроизводительны, экономичны и к тому же малоэнергоемки. Совершенствование их сулит величайшие перспективы. Но, пожалуй, самое большое будущее принадлежит тем из них, которые основываются на использовании биологических катализаторов или, иначе, биокатализаторов — ферментов. Почему? Да потому, что они обладают самой высокой среди всех прочих катализаторов избирательностью действия и не требуют никаких «сверхусловий», протекая при обычных температурах и давлениях.

Правда, до последнего времени их развитие и промышленное использование сдерживалось низкой стойкостью и слишком непродолжительным временем действия. Но сейчас эти «препоны» сняты. Заслуга в этом принадлежит знакомому принципу иммобилизации.

Перспективы использования иммобилизованных ферментов для получения самых разнообразных химических веществ, в химическом анализе, в иммунологии, в микроэнергетике (в частности, в топливных элементах) чрезвычайно заманчивы. Остается, однако, еще одно серьезное препятствие в их «завоевании» важнейших химических процессов — высокая стоимость ферментов. Можно лишь надеяться, что развитие современной биотехнологии, и, в частности, методов генетической и белковой инженерии, разрешит и эту проблему, сделав ферменты вполне доступными по цене для решения практических нужд производства. Вот тогда метод иммобилизации ферментов станет основным элементом химической технологии будущего, тем «переходным мостиком», через который и произойдет дальнейшее слияние биологической технологии с чисто химической.

А за решением этой проблемы просматривается целый комплекс иных, и весьма перспективных. Если сегодня, например, великое множество необходимых нам продуктов мы получаем с помощью только химических процессов, то в не столь уж отдаленном будущем их производство будет основываться преимущественно на использовании ферментов, микроорганизмов и других биологических агентов.

Или взять другую, не менее серьезную проблему — химическую энергетику. Главная задача, над которой работают ученые всех стран мира, специализирующихся в этой области, сводится к разработке принципов, позволяющих выделяющуюся в одной реакции энергию использовать для проведения другой, более энергоемкой.

И здесь химикам тоже есть что позаимствовать у своих ближайших коллег — биохимиков. Тот же, например, известный синтез знаменитой АТФ — своеобразного аккумулятора внутриклеточной энергии. Или не менее известный, и не менее любопытный с точки зрения познания процесс сопряженных биохимических реакций, осуществляемых при дыхании клеток. Создание; работающих на таком принципе химических систем (подобных молекулярным энергетическим машинам) было б крупным достижением как химической технологии и химической энергетики, так и биотехнологии.

Но при всей схожести процессов, протекающих во время химических и биохимических реакций, между ними существует все же значительная разница. О чем забывать нельзя.

Так, в обычных химических реакциях, используемых как в лабораторной, так и в промышленной практике, для получения разнообразных химических веществ атомы, молекулы, ионы, радикалы взаимодействуют между собой случайно. И потому для их реализации не требуется пространственно-временная (молекулярная, а тем более надмолекулярная) организация.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.