Биологические основы старения и долголетия - [30]

Шрифт
Интервал

Для таких клеток роль естественного УФ-излучения в нестабильности их генетического вещества сравнима с ролью тепла в его спонтанной нестабильности. Так, сопоставляя результаты расчетов интенсивности достигающего клеток кожи человека УФ-излучения солнечного света в Южных широтах Северного полушария с зависимостью количества образуемых димеров пиримидиновых оснований от дозы УФ-облучения, определенной экспериментально на культивируемых клетках человека, можно заключить: в ДНК каждой клетки человека с белой кожей, в течение часа пребывающего на ярком солнце, образуется примерно 5·10>4 повреждений, представляющих собой пиримидиновые димеры (т. е. ковалентно сшитые друг с другом пиримидиновые основания, расположенные рядом в одной из полинуклеотидных цепей). Большая часть из них удаляется (вырезается) из ДНК с помощью эксцизионной системы ее репарации.

Но возвратимся к проблеме спонтанных повреждении ДНК. Очевидно, что для понимания молекулярных механизмов старения принципиальное значение имеет вопрос о том, как изменяются с возрастом два рассмотренных фундаментальных, диалектически противоположных процесса возникновение спонтанных повреждений и их репарация. Результаты нескольких исследований (подробнее о них будет рассказано в главе IV) позволяют полагать, что эффективность процесса репарации в старых клетках может быть меньше, чем в молодых. Кроме того, есть основания считать, что нарушение слаженности в работе ансамбля репарирующих ферментов приводит не к залечиванию, а наоборот, к интенсивному повреждению ДНК. Ведь мы видели (см. рис. 6), что на определенном этапе должно происходить своевременное переключение процесса репарации с этапа выщепления оснований на этап синтеза ДНК — заполнения имеющейся в ней бреши. Если же такое переключение почему-то задерживается (например, в клетке понижена концентрация ДНК-полимер азы), и в этом случае экзонуклеаза не может "вовремя остановиться", то процесс деградации ДНК должен стать не физиологическим, а патологическим — процесс репарации "переходит" в свою противоположность, т. е. развивается повреждение генома.

Таким образом, накопление повреждений в геноме стареющих клеток происходит не только вследствие нарушения равновесия между процессами возникновения спонтанных повреждений ДНК и их репарации, но и потому, что уменьшается репарируемость повреждений.

Для того чтобы повреждение могло быть репарировано, оно должно быть доступно для действия репарирующих ферментов. Но ДНК в хроматине ядра находится в упакованном состоянии. Возникающие в некоторых участках генома повреждения ДНК с трудом могут быть "найдены" ферментами репарации. Это особенно относится к тем участкам генома, которые обычно неактивны, синтез РНК на которых не происходит. Если облучить клетку ультрафиолетовым излучением и определить скорость репарации повреждений ДНК, индуцированных этим излучением, то оказывается, что именно в таких участках повреждения ДНК остаются длительное время невосстановленными. Казалось бы, поскольку эти гены функционально неактивны, то и накопление в них повреждений безразлично для клетки. Однако так обстоит дело только до определенной поры. Если клетка вступает в фазу деления, то на таких "испорченных" матрицах будет синтезироваться ДНК с неправильной последовательностью оснований или ДНК, вовсе не содержащая оснований в участке, комплементарном "испорченной матрице". Если в результате повреждений ДНК произойдет нарушение синтеза и распределения между дочерними клетками той пары хромосом, в состав которой такая ДНК входит, клетки могут погибнуть.

Повреждения, возникающие в функционально инертных генах, должны "проявиться" также в тех случаях, когда возникает потребность в их активации, например при гормональной и субстратной индукции синтеза белка и при синтезе антител в ответ на поступление в организм чужеродных антигенов. Во всех этих случаях синтезируемые на "испорченных" матрицах ДНК могут быть функционально неактивными или направлять синтез мутантных белков. Следовательно, рассмотренный процесс накопления повреждений ДНК в тех генах, которые вследствие относительно прочной связи с белками репрессированы (временно или постоянно) и малодоступны для репарации, очевидно, является важной причиной снижения способности старых клеток к индукции синтеза ферментов и антител. Но ведь ранее мы пришли к заключению, что такого рода возрастные изменения определяют уменьшение функциональной способности различных органов, являются характерным признаком старения всего организма. Значит, теперь мы можем определить уровни старения и связи между ними — от молекул до организма.

Существует еще одно обстоятельство, которое делает весьма опасным длительное сохранение в клетках повреждений ДНК. Участки ДНК, содержащие изменения в структуре, вызванные различными повреждающими воздействиями (будь то тепло, ионизирующее или ультрафиолетовые излучения или химические вещества), обладают повышенным "сродством" не только к ферментам, участвующим в репарации этих повреждений, но и к другим белкам. Причем в последнем случае может образоваться химическая, связь (сшивка) между модифицированным участком ДНК и белком (см. рис. 1). После этого клетке труднее провести репарацию ДНК. Более того, такая сшивка ДНК — белок может быть нерепарируемой вообще, что означает необратимое нарушение или, скорее, выключение функции гена.


Рекомендуем почитать
Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий

Улучшение санитарных условий и антибиотики привели к эпохальному повышению продолжительности жизни людей, но при этом послужили причиной новых проблем со здоровьем, нарушив тонкое, вековое равновесие, сложившееся и между микроорганизмами, живущими внутри нас, и в окружающей среде. В итоге устойчивость микроорганизмов к антибиотикам стала одной из самых серьезных медицинских проблем нашего времени. Книга “Микробы хорошие и плохие” посвящена не только этой проблеме, но и так называемой “гигиенической гипотезе”, согласно которой нынешний прогрессирующий всплеск иммунных и других заболеваний связан с нашей чрезмерной заботой об улучшении санитарных условий. Рассказывая о том, что в нашей войне с микробами пошло совсем не так, как надо, Джессика Снайдер Сакс раскрывает перед читателями складывающиеся сегодня представления о симбиотических отношениях человеческого организма и населяющих его микробов, число которых, кстати, превосходит число наших собственных клеток в девять раз! Кроме того, автор этой книги подает нам надежду на то, что в будущем люди научатся создавать и использовать антибиотики более благоразумно, и даже на то, что когда-нибудь мы сможем заменить противо-бактериальные и дезинфицирующие средства бактериальными, каждое из которых будет специально разработано так, чтобы обеспечивать наилучшую заботу о нашем здоровье.


Сердце – не машина

Есть сомнения по поводу названия."С названием этой статьи приключилась почти мистическая история. Рабочим названием было: «Интуиция слепа без знания», поскольку Виктор Николаевич не раз с огорчением говорил о том, что люди тренируются в основном по интуиции. Но при верстке первой части статьи это название каким-то непостижимым образом изменилось на прямо противоположное: «Знание слепо без интуиции» (!!!), хотя в оглавлении номера стояло правильное. Вторая часть выходит с «правильным» названием. Но этот случай навел на мысль расставить на свои законные места интуицию и знание.".


СИБР (хирургическое лечение и профилактика)

Монография предназначена для врачей всех специальностей, студентов и профессорско-преподавательского состава высших медицинских учреждений, сотрудников научно-исследовательских медицинских центров.


Здоровые ноги и руки до старости

Учитывая большую ответственность, которую повседневно несут руки и ноги, забота о них должна быть среди первостепенных. О том, как справиться с заболеваниями наших конечностей, рассказывает эта книжка.Проблемы, требующие вашего личного участия в оздоровлении своего организма, давно известны – остеопороз и переломы костей, плоскостопие, повреждение мениска, подагра, фантомная боль и варикоз. Не менее актуальны травмы конечностей, дрожь и онемение рук, локтевая боль, плексит. Вы узнаете, что предпринимает врач для лечения недуга, какие лекарства и способы выбирает для лечения.


Споры по существу

В 1996 году в мире отмечали 100-летие со дня рождения Н. А. Бернштейна, создателя современной биомеханики - учения о двигательной деятельности человека и животных. К этой дате были приурочены научные конференции в США и Германии. В работе международной конференции в университете штата Пенсильвания (США) приняли участие 200 специалистов из США, Германии, Японии. Россиянин В. П. Зинченко выступил с докладом "Традиции Н. А. Бернштейна в изучении управления движениями". Вот как рассказано об этом в "Книге странствий" Игоря Губермана: "На обеих этих конференциях был его ученик, которого молодые ученые издали оглядывали с почтительным изумлением, довольно различимо шепча друг другу: "Он знал его при жизни, это фантастика!".


Диагностический справочник иммунолога

Данный справочник посвящен важнейшим вопросам современной иммунологии. В нем подробно рассматриваются различные иммунодефицитные состояния и методы их диагностики, все известные на сегодня болезни и расстройства иммунной системы, проблемы вакцинологии, традиционные и нетрадиционные методы лечения иммунной системы. Книга адресована практикующим врачам-иммунологам, а также широкому кругу читателей.