Биохимия старения - [37]

Шрифт
Интервал



Рис. 3.1.Синтез цепей гемоглобина у плода человека [116]


Так же как α>2ε>2, α>2γ>2, α>2β>2 являются различными молекулярными формами гемоглобина, изоферменты — это различные молекулярные формы одного и того же фермента. Изоферменты характерны для ферментов, состоящих из двух или более субъединиц. Досконально исследованным в этом отношении ферментом является лактатдегидрогеназа (ЛДГ), катализирующая обратимое превращение пирувата в лактат. В различных тканях крысы имеются пять изоферментов ЛДГ [110]. Они состоят из субъединиц двух типов, Н и М, которые соединяются в различных соотношениях и дают пять типов активных изоферментов: H>4, Н>3М>1, Н>2M>2, Н>1М>3 и M>4. Н- и М-субъединицы различаются по аминокислотной последовательности и кодируются двумя разными генами, что показано путем генетических исследований оленьей мыши [99]. Маркет и Мёллер [78] впервые показали, что тип изофермента ЛДГ не только специфичен относительно вида ткани, он изменяется также в одной и той же ткани в процессе развития (рис. 3.2). Было высказано предположение, что тип изофермента в ткани отражает степень дифференцировки ее клеток. На ранней зародышевой стадии животных в тканях преобладают типы М>4 и H>1М>3, но в процессе развития наблюдается переход к изоферментам Н>3М>1 и Н>4. Эта постепенная смена изоферментов указывает на переход к большей активности гена Н-субъединицы или к меньшей активности гена М-субъединицы.



Рис. 3.2. Электрофореграмма в крахмальном геле ЛДГ из тканей человека в период развития. Ткани взяты у 14-недельного эмбриона [75]


Следует отметить также, что Н>4- и Н>3М>1-изоферменты присутствуют преимущественно в аэробных тканях, таких, как сердце, мозг и кора надпочечников, тогда как М>4 и H>1М>3-изоферменты присутствуют преимущественно в анаэробных тканях, таких, как скелетные мышцы и печень [19, 79]. Эмбрион млекопитающего, растущий в анаэробном окружении, содержит большие количества М>4- и Н>1М>3-изоферментов; с развитием эмбриона происходит переход к Н>4- и Н>3М>1-рформам. Эмбрион птенца растет в аэробном окружении, и он содержит больше Н>4 и Н>3М>1-форм. В процессе его развития происходит переход к М>4- и Н>1М>3-изоферментам. Эти наблюдения подтверждают предположение о том, что соотношение изоферментов в тканях, по крайней мере частично, обусловлено давлением кислорода. Экспериментально на культурах тканей показано, что в анаэробных условиях клетки синтезируют больше М>4-формы ЛДГ [41].

В свете вышесказанного существенны данные лаборатории Канунго по изменению соотношения изоферментов в тканях крысы в зависимости от возраста [55, 100], показывающие, что содержание М>4-ЛДГ в сердце 96-недельной крысы значительно ниже, чем у 30-недельной (рис. 3.3). В скелетных мышцах (рис. 3.4) и в мозгу (рис. 3.5) содержание М>4-ЛДГ также понижается. Относительное содержание Н>4-ЛДГ у старых животных, наоборот, повышается. Эта смена форм изоферментов может иметь большое физиологическое значение для старого животного, поскольку она может вызвать изменения в функционировании органов.



Рис. 3.3.Активность ЛДГ, выделенной из сердца крысы, в зависимости от возраста [100].

> I — М-ЛДГ; II — Н-ЛДГ; III — (Н+М) — ЛДГ



Рис. 3.4.Активность ЛДГ, выделенной из скелетных мышц, в зависимости от возраста [100].

>I — М-ЛДГ; II — Н-ЛДГ; III — (Н+М) — ЛДГ



Рис. 3.5. Активность ЛДГ, выделенной из мозга крысы, в зависимости от возраста [100].

>I — М-ЛДГ; II — Н-ЛДГ; III — (Н+М) — ЛДГ


Известно, что М>4-ЛДГ катализирует превращение пирувата в лактат лучше, чем Н>4-ЛДГ [26]. Следовательно, для тканей в анаэробных условиях, где источник кислорода отсутствует или не соответствует потребностям, большое количество М>4-ЛДГ является преимуществом. Благодаря этому ферменту ткань способна производить энергию путем анаэробного гликолиза, превращая пируват в лактат. Уменьшение относительного содержания М>4-ЛДГ, происходящее в старости, может снижать способность ткани приспосабливаться к анаэробным условиям. Следовательно, вероятность повреждения ткани в результате недостатка энергии в старости должна быть больше. Это хорошо коррелирует с более частыми случаями сердечной недостаточности у людей старческого возраста. Переход к ингибированию синтеза М-субъединиц в этих тканях в старческом возрасте может сделать ткани более аэробными и все более зависящими от цикла Кребса. Если бы переход к понижению относительного содержания М>4- и М>3Н>1-форм после достижения зрелости мог быть прекращен, то энергетические соотношения в организме могли бы поддерживаться такими же, как в репродуктивном периоде. Было показано, что 17β-эстрадиол в матке незрелых крыс и кроликов усиливает преимущественно синтез М-субъединиц, в то время как он не влияет на синтез Н-субъединиц [40]. Повышение уровня М-субъединиц в таких тканях, как сердце и мозг, может быть полезным для старых животных.

Пируваткиназа (РК) катализирует превращение фосфоенолпирувата в пируват. Этот фермент имеет четыре изофермента: РК-1, 2, 3 и 4. В скелетных мышцах крысы в момент рождения изофермент РК-4 является доминирующей формой, но примерно на 14-й день он исчезает и заменяется изоферментом РК-3, который сохраняется до 52 нед [85]. Такие же изменения наблюдаются в сердечной мышце. Эти исследования не проводились на более старых животных, однако ясно, что, как и в случае изоферментов ЛДГ, изоферменты РК последовательно сменяют друг друга до позднего периода зрелости. У РК-3 Км для фосфоенолпирувата ниже (0,75·10


Рекомендуем почитать
Теломераза. Как сохранить молодость, укрепить здоровье и увеличить продолжительность жизни

Как сохранить молодость, остановить старение, укрепить здоровье и увеличить продолжительность жизни? Наука стоит на пороге революции: исследования теломер (концевые участки хромосом) и теломеразы (Нобелевская премия по физиологии и медицине 2009 года) дали свои плоды. Доктор М. Фоссел, ведущий специалист по клиническому применению теломеразы, в своей книге рассказывает, что такое старение, почему изнашиваются органы тела, стареет сама клетка, и объясняет, как и чем всем нам может помочь открытие этого фермента и что еще нужно (диета, упражнения…), чтобы повернуть процесс старения вспять и полностью избавиться от всех возрастных болезней.


Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий

Улучшение санитарных условий и антибиотики привели к эпохальному повышению продолжительности жизни людей, но при этом послужили причиной новых проблем со здоровьем, нарушив тонкое, вековое равновесие, сложившееся и между микроорганизмами, живущими внутри нас, и в окружающей среде. В итоге устойчивость микроорганизмов к антибиотикам стала одной из самых серьезных медицинских проблем нашего времени. Книга “Микробы хорошие и плохие” посвящена не только этой проблеме, но и так называемой “гигиенической гипотезе”, согласно которой нынешний прогрессирующий всплеск иммунных и других заболеваний связан с нашей чрезмерной заботой об улучшении санитарных условий. Рассказывая о том, что в нашей войне с микробами пошло совсем не так, как надо, Джессика Снайдер Сакс раскрывает перед читателями складывающиеся сегодня представления о симбиотических отношениях человеческого организма и населяющих его микробов, число которых, кстати, превосходит число наших собственных клеток в девять раз! Кроме того, автор этой книги подает нам надежду на то, что в будущем люди научатся создавать и использовать антибиотики более благоразумно, и даже на то, что когда-нибудь мы сможем заменить противо-бактериальные и дезинфицирующие средства бактериальными, каждое из которых будет специально разработано так, чтобы обеспечивать наилучшую заботу о нашем здоровье.


Сердце – не машина

Есть сомнения по поводу названия."С названием этой статьи приключилась почти мистическая история. Рабочим названием было: «Интуиция слепа без знания», поскольку Виктор Николаевич не раз с огорчением говорил о том, что люди тренируются в основном по интуиции. Но при верстке первой части статьи это название каким-то непостижимым образом изменилось на прямо противоположное: «Знание слепо без интуиции» (!!!), хотя в оглавлении номера стояло правильное. Вторая часть выходит с «правильным» названием. Но этот случай навел на мысль расставить на свои законные места интуицию и знание.".


Здоровые ноги и руки до старости

Учитывая большую ответственность, которую повседневно несут руки и ноги, забота о них должна быть среди первостепенных. О том, как справиться с заболеваниями наших конечностей, рассказывает эта книжка.Проблемы, требующие вашего личного участия в оздоровлении своего организма, давно известны – остеопороз и переломы костей, плоскостопие, повреждение мениска, подагра, фантомная боль и варикоз. Не менее актуальны травмы конечностей, дрожь и онемение рук, локтевая боль, плексит. Вы узнаете, что предпринимает врач для лечения недуга, какие лекарства и способы выбирает для лечения.


Споры по существу

В 1996 году в мире отмечали 100-летие со дня рождения Н. А. Бернштейна, создателя современной биомеханики - учения о двигательной деятельности человека и животных. К этой дате были приурочены научные конференции в США и Германии. В работе международной конференции в университете штата Пенсильвания (США) приняли участие 200 специалистов из США, Германии, Японии. Россиянин В. П. Зинченко выступил с докладом "Традиции Н. А. Бернштейна в изучении управления движениями". Вот как рассказано об этом в "Книге странствий" Игоря Губермана: "На обеих этих конференциях был его ученик, которого молодые ученые издали оглядывали с почтительным изумлением, довольно различимо шепча друг другу: "Он знал его при жизни, это фантастика!".


Диагностический справочник иммунолога

Данный справочник посвящен важнейшим вопросам современной иммунологии. В нем подробно рассматриваются различные иммунодефицитные состояния и методы их диагностики, все известные на сегодня болезни и расстройства иммунной системы, проблемы вакцинологии, традиционные и нетрадиционные методы лечения иммунной системы. Книга адресована практикующим врачам-иммунологам, а также широкому кругу читателей.