Биография атома - [8]
И вскоре выяснилось, почему Дальтон ошибался.
Дальтон считал, что один атом одного элемента соединяется только с одним атомом другого элемента. В этом-то и была его ошибка. Он был прав только тогда, когда действительно один атом одного элемента соединяется с одним атомом другого элемента. В этом случае вывод о том, что отношение частей, вступающих в реакцию элементов, соответствует отношению атомных весов, как при реакции водорода с хлором, будет правильным. А если один атом одного элемента соединяется, например, с двумя атомами другого элемента? Тогда соотношение частей элементов, вступающих в реакцию, не соответствует соотношению атомных весов. Примером этого служит образование воды из кислорода и водорода.
В чем же тут дело? Ошибку Дальтона исправили итальянский физик Амедео Авогадро и шведский химик Иоганн Берцелиус.
Дальтон просто не знал о существовании молекулы, состоящей из атомов одного и того же вещества (по-французски «молекула» означает «маленькая масса»). Молекула — наименьшее количество данного вещества, обладающее основными свойствами этого вещества. Молекула может состоять из одного атома, из двух, трех, десятков, сотен и, как сейчас установлено, даже тысяч атомов. В этом-то все и дело. Несколько позднее Авогадро предположил, что одинаковые объемы различных газов содержат одинаковое число молекул. Это предположение позволило ученым все поставить на свои места.
При реакции водорода с кислородом не один, а два атома водорода соединяются с одним атомом кислорода. И хотя на одну часть водорода при образовании воды приходится восемь частей кислорода, число атомов водорода, вступающих в реакцию, в два раза больше числа атомов кислорода, тоже вступающих в реакцию. Значит, ошибка Дальтона заключалась в том, что он в два раза уменьшил число атомов водорода. И, следовательно, сделал неправильный вывод.
Другими словами, не одну часть водорода нужно было принять за единицу, а только половину части. Тогда и получается, что атомный вес водорода в шестнадцать (а не в восемь) раз меньше атомного веса кислорода.
1869 год. 6 марта
«Менделеев... совершил научный подвиг, который смело можно поставить рядом с открытием Леверье, вычислившего орбиту еще неизвестной планеты — Нептун».
Ф. ЭНГЕЛЬС
Был или не был порядок?
о второй половине прошлого века наука какому пила уже довольно много сведений о поведении ЩЖ атомов. Стали понятными закономерности превращений элементов. Еще великий русский ученый М. В. Ломоносов утверждал, что природа не есть хаотическое нагромождение процессов: в ней проявляются определенные закономерности. Понять и использовать эти закономерности — вот задача науки.
Это высказывание Ломоносова с каждым десятилетием все больше и больше подтверждалось. Особенно хорошо ею подтвердила теория Дальтона, развитая Авогадро и Берцелиусом. Благодаря работам этих ученых никто уже не сомневался в том, что все многообразие превращений и свойств веществ зависит от поведения мельчайших частиц — атомов.
Уже были известны десятки химических элементов и точно установлено, что из этих элементов, атомы которых комбинируются при химических реакциях определенным образом, получаются все остальные вещества.
Но тем не менее оставалось неясным: почему одни элементы ведут себя так, другие иначе? Почему некоторые элементы проявляют примерно одинаковые свойства, а их атомные веса сильно отличаются? Почему одни тяжелее, а другие легче? И таких «почему» было много.
Не было еще настоящего порядка в мире веществ. Вернее, порядок-то был,— это еще Ломоносов предсказывал,— но какой он, в чем заключаются закономерности этого порядка — было неясно.
Мартовская сенсация
Это случилось 6 марта 1869 г. В тот день в Петербургском университете происходило заседание русского физико-химического общества. Виднейшие русские ученые, присутствовавшие на заседании, уже знали приблизительно о теме сообщения, которое будет сделано на заседании. Автором этого сообщения был молодой талантливый профессор кафедры неорганической химии Петербургского университета Дмитрий Иванович Менделеев.
Еще в январе 1869 г. многие из ученых, присутствовавшие на этом заседании, получили листок, озаглавленный «Опыт системы элементов, основанный на их атомном и химическом сходстве».
На листке были выписаны обозначения химических элементов. Их тогда было известно 63. Ученые обратили внимание, что химические элементы в этой небольшой табличке располагаются по порядку возрастания атомных весов. Но далеко не все тогда поняли, что в этом-то и заключается великий смысл коротенькой записки Менделеева.
Но то, что они услышали на заседании, было огромной сенсацией. Правда, самого Менделеева на заседании не было. В тот день он болел. От его имени сообщение сделал профессор Н. А. Меншуткин. Сообщение называлось «Соотношение свойств с атомным весом элементов». То, о чем рассказывалось в сообщении, было великим открытием, оказавшим огромное влияние на науку. После открытия Менделеева началась новая эпоха в развитии науки — эпоха атомной науки. И вот почему.
>
Можно ли случайно сделать великое открытие?
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.