Биография атома - [56]
И атом нам служит для мира, Для счастья советских людей».
Что же дальше?
Мы закончили рассказ об атомном ледоколе. Теперь этот могучий корабль выполняет важную народнохозяйственную задачу — проводит караваны судов по Северному морскому пути. Это наш первенец. Ну а дальше?
Каковы перспективы использования могучей энергии атома на судах? Может быть, достаточно одного такого мощного ледокола? Конечно, нет.
Использование атомной энергии на морском транспорте приносит громадные преимущества. Постройка атомного ледокола — только начало. Бесценный опыт, который накоплен при сооружении атомного ледокола, позволит широко развить в СССР работы по созданию атомного гражданского флота.
Сотни советских кораблей бороздят воды земного шара. Они перевозят грузы между портами Советского Союза и осуществляют торговые связи между СССР и многими странами мира. Многие тысячи километров по морю отделяют, например, Одессу от Владивостока, Ленинград от Индонезии, Китая, Индии, Южной Америки. Сотни тысяч тонн высокосортного топлива вынуждены сжигать обычные суда на этих путях, терять много дней на заправку топливом в пути.
А наши китобои или исследователи, работающие в Антарктиде! Далек их путь в Антарктиду, огромное количество топлива приходится туда везти судам. Ведь нужно запастись на оба конца. Вот и везут корабли на себе топливо, занимают им место и не могут взять больше полезных грузов.
Другое дело — атомный корабль. Ему не страшна угроза израсходования запасов топлива. Он может быстро, без задержки доставлять грузы на любое расстояние. Поэтому во многих странах мира уделяется большое внимание созданию атомных судов. Такие работы ведутся в США, Англии, ФРГ, Норвегии, Швеции.
Много особенностей у атомных кораблей, и большие трудности связаны с их сооружением. Однако недалеко то время, когда множество атомных судов начнет бороздить моря и океаны. И нет сомнения, что над многими и лучшими из них будет развиваться флаг Страны Советов, страны, которая первой применила атомную энергию на мирном морском транспорте.
1961 год
Промышленный эксперимент
1961 год — третий год семилетки. Вся наша необъятная страна в лесах новостроек. Советский народ под руководством партии строит коммунизм. Но коммунистическое общество немыслимо без изобилия энергии. «Коммунизм — это есть советская власть плюс электрификация всей страны»,— говорил В. И. Ленин. Поэтому, выполняя заветы великого Ленина, наша партия уделяет чрезвычайно большое внимание энергетике, рассматривает ее как основу основ народного хозяйства, как основной стержень всего коммунистического строительства.
Рассказывая о первой в мире атомной электростанции, мы уже говорили о том, какую основную задачу должны выполнять советские специалисты по ядерной энергетике. А задача такая: хорошо подготовиться к тому времени, когда ядерная энергетика должна будет взять на себя обеспечение значительной доли потребности страны в электроэнергии. Задача чрезвычайно важная и ответственная, и она требует, чтобы к этому времени (а это время не за горами) советский народ имел в своем распоряжении экономичные и надежные атомные электростанции, на которые можно было бы положиться.
Именно эта задача — по выявлению наилучших типов реакторов путем их постройки и сравнительной эксплуатации в промышленном масштабе — и выполняется сейчас в Советском Союзе. И называется эта задача — полномасштабный промышленный эксперимент. Но почему мы говорим о типах реакторов? И что определяет тип реактора?
Почему так много?
Мы уже знаем устройство реактора первой в мире атомной электростанции. Успешная работа ее позволила приступить к сооружению на Урале гораздо более мощной атомной электростанции, основанной на типе реактора, в котором замедлителем нейтронов служит графит, теплоносителем — вода под давлением, горючим — обогащенный уран. Строительство этой станции заканчивается.
Совсем иной тип реактора используется в другой, не менее мощной атомной электростанции, сооружаемой под Воронежем. Здесь реактор так называемого водо-водяного типа, т. е. замедлителем нейтронов и одновременно теплоносителем служит вода под давлением. Такой тип реактора установлен на ледоколе «Ленин».
В США работает небольшая атомная электростанция, в реакторе которой замедлителем служит графит, а теплоносителем — расплавленный металл (натрий).
В Англии широкое распространение получили реакторы с графитовым замедлителем и теплоносителем в виде углекислого газа под давлением.
Примеров разнообразного применения видов теплоносителя, замедлителя, горючего, способов его размещения и прочих характеристик реактора можно привести множество.
Почему же такое разнообразие?
Составим несложную таблицу, в которой перечислим виды ядерного горючего, используемого в реакторах, замедлителя, теплоносителя, энергии нейтронов, под действием которых делятся ядра атомов урана, и способы размещения горючего (см. стр. 198).
Пользуясь алгебраическими правилами, можно было бы легко подсчитать число возможных комбинаций из перечисленных в таблице характеристик реакторов. Столько, казалось бы, должно быть и типов реакторов. На самом деле это не так. Некоторые комбинации невозможно осуществить, поскольку входящие в них характеристики взаимно исключают друг друга. Например, в реакторе, работаю щем на быстрых нейтронах, не нужен замедлитель нейтронов, а вода в таком реакторе не может быть использована в качестве теплоносителя, так как она замедляет нейтроны. В таком реакторе замедлителем могут быть только расплавленные металлы (натрий, калий, ртуть), так как они плохо замедляют нейтроны.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.