Беседы о рентгеновских лучах - [15]

Шрифт
Интервал

В последние годы появилась служба Солнца, которая следит за изменениями его рентгеновской активности. Его невидимые излучения вот уже много лет подряд изучаются с помощью советских спутников («Космос», «Прогноз»). По договоренности между странами — участницами программы «Интеркосмос» едва ли не каждый четвертый летательный аппарат этой серии несет на борту приборы, которыми регистрируются спектры солнечной короны в рентгеновском диапазоне.

Таков, например, «Интеркосмос-16», запущенный в июле 1976 года с советской стартовой площадки. Аппаратура для спутника разрабатывалась в ГДР, СССР, Чехословакии и Швеции.

Значение рентгеновской и гамма-астрономии будет возрастать тем больше, чем дальше проникнет человек в просторы вселенной. А он уже сегодня не ограничивается «каботажным» космоплаванием: вспомнить хотя бы экспедиции лунопроходцев. Завтра, еще в нашем веке, вполне реален пилотируемый полет к Марсу с многомесячным пребыванием экипажа в межпланетном пространстве. Впрочем, все продолжительней становятся и путешествия людей по околоземным орбитам. Такие рейсы, регулярные, массовые, выдвигают новые требования перед астрономией невидимого.

«Знать, чтобы предвидеть, предвидеть, чтобы действовать». Таков девиз этой, да и любой иной науки, когда она посвящает себя разведке дальнего прицела, фундаментальным исследованиям. Какими бы ни были их задачи, сверхзадача одна — стать опорой прикладных изысканий, помочь решению практических проблем.

Из заоблачных далей читатель спускается на землю, углубляется в рентгенометрию и присматривается к лидерам естествознания

— Не пора ли все же спуститься из заоблачных далей на грешную землю? Мы ведь и на своей планете окружены мощными источниками рентгеновских лучей. Кроме того, раз уж новейшая астрофизика успела сделать столько интересных открытий, то добрая старая физика наверняка еще больше, не так ли?

— Как ни странно, по числу важнейших открытий, сделанных в последнее пятнадцатилетие, счет 5:2 в пользу астрономии, не физики.

— И все-таки, уж коли далекие, «за тридевять небес», икс-объекты столь тесно связаны с жизнью людей, то близкие нам и подавно. Так что не лучше ли вернуться в лоно рентгенологии? Тем более что она располагает самыми мощными из наземных источников рентгеновских лучей, верно ведь?

— Нет, не она — физика.

«Ослепительная зеленоватая вспышка, взрыв, сознание подавлено, волна горячего ветра, и в следующий момент все вокруг загорается… Миг — и с людей свалилась вспыхнувшая одежда, вздулись руки, лицо, грудь; лопаются багровые волдыри, и лохмотья кожи сползают на землю… Оглушенные и обожженные люди, обезумев, сбившись ревущей толпой, слепо тычутся, ища выхода…»

Такой запечатлелась в памяти случайно выживших очевидцев Хиросима 6 августа 1945 года. Летающая крепость Б-29 «Энола-Гей», которой сентиментальный пилот дал нежное имя своей матери, сбросила на огромный город урановую бомбу, ласково прозванную «Малышкой». Детонатор сработал на высоте 500 метров над центральными улицами, которые заполнили японцы, спешившие на работу. Через три дня кошмар повторился в Нагасаки. Там была взорвана плутониевая «Толстуха».

Итоги «экспериментов»? Около 220 тысяч мгновенно убитых и искалеченных. И еще сотни тысяч погибших потом, после медленной агонии, длившейся порой годами. Она была вызвана облучением.

Новое оружие уничтожало не только сокрушительной ударной волной, не только ослепительным светом и испепеляющим жаром. В отличие от всех прежних оно губило живое с неслыханной до того силой. Незримым излучением, которое мы называем ионизирующим. В частности, жесткой рентгеновской и гамма-радиацией.

Откуда же берутся эти смертоносные кванты?

При взрыве мгновенно выделяется огромная энергия.

Возникает высокотемпературная плазма, которая, как мы уже знаем, дает тепловое рентгеновское и гамма-излучение. Но это еще не все. Огненный шар быстро исчезает, а жесткая радиация продолжает поражать население. Значит, остаются ее носители. Это радиоактивные изотопы. Они образуются при делении ядер урана или плутония, разваливающихся на осколки, и разбрасываются по всей округе. Впрочем, и это не все, Мощные потоки частиц, пронизывая окружающую среду, делают радиоактивными еще недавно безобидные вещества, содержащиеся в воздухе, почве, водах, постройках. Даже в организме. Иначе говоря, появляется наведенная радиоактивность.

Подобное заражение местности губительно даже для тех, кто совершенно не пострадал от взрыва самого по себе, приехав, скажем, издалека через много часов или дней после бомбардировки. Кроме того, радиоактивные изотопы накапливаются в организме, попадая внутрь при еде и дыхании.

Минимальная абсолютно летальная доза для человека — 600 рентген. Но при длительных воздействиях даже 0,1 рентгена в день может вызвать образование опухолей. Следует добавить, что в 1945 году никто этого ведать не ведал. Хотя икс-лучи исследуются с 1895 года, они явились тогда, ровно через полвека, отнюдь не добрыми старыми знакомыми, а нежданно-негаданно зловещими таинственными невидимками.

Но самыми мощными на Земле источниками рентгеновской радиации стали взрывы новых сверхбомб — термоядерных. Среди них есть просто чудовищные: во много десятков мегатонн, эквивалентные тысячам таких, что растерзали Хиросиму и Нагасаки.


Рекомендуем почитать
Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.