Беседа с Г.И.Шиповым - [3]

Шрифт
Интервал

Для защиты диссертации на кафедре теор. физики МГУ необходимо было сдать кандидатский экзамен по теоретической физике, хотя у меня все кандидатские были сданы еще в 1970 г. У меня приняли диссертацию и соответствующие документы для сдачи экзамена. Было назначено дата и время экзамена, но когда я пришел на сдачу экзамена, Д.Иваненко на экзамен не явился. Поскольку Д.Иваненко выступал в данном случае в качестве научного руководителя моей работы, его отсутствие на экзамене привело к срыву второй защиты.

Для того, чтобы иметь возможность оформить документы для защиты диссертации, я поступил на работу в Московский университет, но не на физфак, а на химфак. После провала со сдачей экзамена я стал писать третью диссертацию - потому что работа по осмыслению полученных результатов идёт постоянно. Мне было недосуг каждый раз заниматься организацией защиты, бегать по кабинетам чиновников, кого-то уговаривать - эта такая нудная и ненужная для науки работа. Истинная работа теоретика – это когда ты сидишь за рабочим столом или в библиотеке, занимаешься изучением необходимых статей других ученых и работаешь над совершенствованием возникших идей. В результате ты видишь, что делать дальше...

Я хотел бы вновь вернуться к торсионному движителю и теоретическому осмыслению его движения. Так вот, когда я поступил в аспирантуру УДН в 69-м году, мой научный руководитель Александр Александрович Семёнов - замечательный человек, великолепный физик, который занимался распространением электромагнитных волн в среде, дал мне приглашение на выступление Владимира Николаевича Толчина в Московском обществе испытателей природы. В.Н.Толчин - инженер из Перми в 1936 году при выполнении одной работы вдруг обнаружил, что разрабатываемое им устройство выпрыгнуло из рук, и он не почувствовал отдачи. Т.е. на уровне ощущений, на уровне чувств он обнаружил, что есть какие-то механизмы, которые движутся без отдачи, «не опираясь ни на что». С 1936 года по 1969 год он работал над усовершенствованием своего прибора и сделал несколько устройств, которые демонстрировали нарушение двух законов классической механики Ньютона: закона сохранения импульса - это центральный закон классической механики, и закон сохранения момента импульса.

В конце 60-х годов он много раз выступал на разных научных форумах, на заседаниях академиков и по телевидению. Он неоднократно демонстрировал ученым нарушение законов классической механики его приборами.


Вы тогда ещё не занимались решением проблем Эйнштейна?


Я только что поступил в аспирантуру в 69-м, и был на первом курсе. Но уже тогда я работал над решением первой проблемой Эйнштейна. Однако геометризация электродинамики была далеко от того, что демонстрировал В.Н.Толчин в своих экспериментах. Он демонстрировал следующее (у меня есть фильмы): на легкой тележке, стоит обычный грузовик-игрушка - заводная машинка. И вот когда грузовик едет по тележке, то он на неё опирается, и из-за действия сил трения тележка движется в одну сторону, а грузовик - в другую. Естественно, что центр масс системы остается на месте. А когда он ставил свое устройство-инерциоид на тележку, то при движении инерциоида по тележке она оставалась в покое. Он ставил свой инерциоид на качели. Когда заводная машинка съезжает с качелей - машинка в одну сторону, качели в другую. Но когда инерциоид движется по платформе качелей - качели даже не колеблются. Я был поражён.


Но она при этом двигалась без рывков?


Нет, она двигалась неравномерно, и это была основная причина, по которой оппоненты В.Н.Толчина говорили, что движение инерциоида происходит за счёт сил трения. Колёса тележки инерциоида движутся вперёд и назад, при этом движения в разных направлениях порождают разные силы трения. Тогда я впервые столкнулся с новым для меня явлением, но вскоре забыл про это всё. После демонстрации инерциоида выступали механики- профессионалы и говорили, что причиной его движения являются силы трения, поэтому в экспериментах Толчина нет ничего нового. И вот когда провалилась моя вторая диссертация, защитить которую в данном случае не дал Д.Д.Иваненко, я вспомнил эксперименты Толчина, поскольку в диссертации центральным объектом исследования были торсионные поля (поля инерции) и силы инерции. Как известно, силы инерции не подчиняются третьему закону механики Ньютона, а инерциоид демонстрирует нарушение именно этого закона.


А там нельзя было просто назначить ещё один экзамен - ну мало ли, ну не пришёл профессор?..


А вы знаете, когда я пришёл к зав. кафедрой А.А.Соколову и попросил его принять у меня экзамен без Иваненко, то получил отказ. Одним словом, не пустили меня в науку по формальным соображениям. И вот я работаю в МГУ. Устроил на работу в МГУ меня мой первый научный руководитель Рем Викторович Хохлов, в то время он был ректором МГУ. Я написал ему записку, сказал - так и так... не берут на работу в МГУ. Дело в том, что когда до обращения к Р.В.Хохлову мои документы о приеме на работу попали в первый отдел хифака МГУ и они узнали, что после окончания аспирантуры я работал в Сибири художником-оформителем (смеётся), решили, что из такого человека как я учёного не получится, и не приняли меня.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.