Баллистическая теория Ритца и картина мироздания - [26]

Шрифт
Интервал

зарядов проводника с разным запозданием и интенсивностью. Это снова породит электрическую силу индукции U=-dФ/dt и ток в рамке.


Рис. 19. Замедление зарядов в проводнике (ускорение a направлено против скорости) снижает величину тока I и вызванный им поток индукции Ф через рамку, а также создаёт разность сил, наводящих ЭДС и ток индукции в контуре.


Итак, магнитные, индукционные и прочие электродинамические эффекты, включая релятивистские, возникают в БТР как малые добавки к силе электрического воздействия от равномерного или ускоренного движения зарядов. Эти добавки возникают при учёте высших порядков при разложении электрической силы в ряд по степеням V/c и Rа/c>2. Влиянию этих малых, но весьма существенных поправок Ритц придавал основное значение в своей электродинамике, показав, что эти добавки вызваны запаздыванием воздействий, конечной скоростью их распространения (см. эпиграф § 1.8), отчего меняется частота f прихода реонов к заряду, а значит сила воздействия на него. То есть, электродинамические эффекты — это прямое следствие квадратичного эффекта Доплера и Ритца — изменения частоты f = f>0[1–V>2/c>2+Rа/c>2] от движения источника (см. § 1.20 и § 1.10). Потому похожее выражение получается и для силы взаимодействия зарядов F=F>0[1–V>2/c>2+2Rа/c>2]. Это, как и все электродинамические эффекты, — прямое следствие открытых Ритцем пространственно-временных соотношений и конечной скорости c реонов, то есть запаздывания электрических сигналов. Именно единая кинетическая природа эффектов Доплера и Ритца позволяет понять, почему изменение потока Ф через контур как от скорости (Рис. 18), так и от ускорения зарядов (Рис. 19), порождает одинаковую ЭДС индукции, а также найти исключения из этого эмпирического правила Фарадея.

Электродинамику Максвелла предпочли исконной веберовской ещё и потому, что он рассматривал электромагнитные явления в средах, Вебер же говорил лишь о взаимодействии в пустоте. Вдобавок электродинамику сред проще изучать в рамках полевого, эфирного подхода, на языке физики сплошных сред, к которым относили эфир. Но, как показал Лоренц в своей электронной теории, все выводы электродинамики Максвелла для диэлектриков, металлов, преломляющих сред, получаются и в прежнем описании элементарных взаимодействий зарядов в вакууме. Надо лишь представить среду совокупностью зарядов (электронов и ионов), смещаемых и колеблемых под действием внешних источников, тем самым порождая вторичные воздействия и волны, которые налагаются на исходные и потому преобразуют их. Так что и здесь концепция Ритца — логичней максвелловой, вводящей для каждой среды свои свойства эфира. Впрочем, учёные во главе с Лоренцем пытались встроить электронную теорию, отрицающую особую роль среды, — в максвеллову, хотя куда естественней она вписывалась в электродинамику Вебера.

Объясняет Ритц и электромагнитные волны, давшие признание электродинамике Максвелла (§ 1.11). Как показал Ритц, электромагнитные волны получались и в электродинамике Вебера, причём много проще. Если Максвеллу требовались нескончаемые превращения электрического и магнитного поля для распространения волн, то в электродинамике Ритца световые колебания возникали как естественное следствие передачи переменных электрических воздействий с конечной скоростью потока частиц, равной скорости света c. Опыты Герца доказали реальность электромагнитных волн, электрическую природу света, но ничуть не подтвердили физической реальности поля или эфира и основанной на них теории Максвелла. Таким образом, электродинамика Ритца описывает те же самые эффекты, что и электродинамика Максвелла, в большинстве случаев естественно приводя к тем же результатам. И лишь в тонких и ещё неисследованных эффектах можно найти расхождение между этими электродинамическими теориями, что позволит однажды строго, на основании опытов, сделать выбор в пользу одной из теорий. Но уже сейчас в пользу БТР говорит то, что в электродинамике Ритца все явления трактуются чисто механически, наглядно. Существование магнитных и индукционных эффектов в БТР само собой вытекает из модели взаимодействия зарядов и не нуждается, в отличие от максвелловой теории, в принятии искусственных дополнительных гипотез об абстрактных электрических и магнитных полях.

Физики, однако, боготворят Максвелла и его уравнения. Восхищение уравнениями Максвелла доходит до того, что их обожествляют, словно в них заключена вся мудрость природы, и всё из них следует. А между тем эти уравнения построены чисто формально, как произвольные обобщения эмпирически открытых законов. Так, первое уравнение Максвелла rotH=∂D/∂t+j и четвёртое уравнение divB=0 — это всего лишь обобщения известных законов Био-Савара-Лапласа и Ампера, позволяющих найти величину магнитного поля проводника с током. Второе уравнение Максвелла rotE=-∂B/∂t — это просто обобщённый закон электромагнитной индукции Фарадея [88]. Наконец, третье уравнение divD=ρ — это, опять же, не более чем обобщение закона Кулона, задающего электрическое поле D заряда, и теоремы Остроградского-Гаусса. Иногда утверждают, что Максвелл, кроме обобщения этих известных законов, сделал важное и даже гениальное добавление — открыл ток смещения (∂


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.