Баллистическая теория Ритца и картина мироздания - [16]
Но вернёмся к более адекватной и естественной теории Ритца. Постоянная скорость испускания реонов — это не единственное, что БТР должна объяснить. Возникает более серьёзная проблема. БТР утверждает, что реоны — это энергоносители электрического поля. Кроме того, это, по-видимому, ещё и тот строительный материал, из которого сложены электроны. Но если это так, и электрон испускает реоны в процессе распада, то он обязан терять массу, подобно распадающимся ядрам того же урана. А между тем, как показывает опыт, электрон — это стабильная частица, имеющая постоянную массу. Существовало, правда, предположение, высказанное Дираком, что масса электрона может медленно уменьшаться, и эксперименты порой, казалось, даже подтверждали это. Быть может, масса терялась именно за счёт испускания реонов, уносящих каждый ничтожную в сравнении с электроном массу?
Попробуем рассчитать, насколько быстро электрон должен терять свою массу. В этом нам поможет соотношение, найденное в предыдущем разделе (§ 1.4). А именно:
r/c=(4M/m)/N.
Напомним, здесь: r — это радиус электрона, c — скорость света, M — масса электрона, m — масса испущенного им реона, N — число реонов, испускаемых электроном в единицу времени. Смысл этого выражения легко понять. В левой части стоит время, за которое свет проходит расстояние, равное радиусу электрона: r/c=(2,8·10>-15)/(3·10>8)≈10>-23 секунды. А в правой — учетверённое число реонов, содержащихся в электроне, делённое на частоту их испускания. Фактически по порядку величины — это время, за которое электрон потеряет всю массу, израсходует весь свой заряд, запас реонов, словно автомат, расстрелявший обойму. Выходит, электрон полностью распадётся за время порядка 10>-23 секунды. А между тем электроны не только не исчезают за столь краткое время, но не теряют в весе и за много большие времена.
Почему же постоянная утечка реонов с электрона не вызывает постепенную утрату им массы и энергии? Каким образом реоны могут течь из электрона неиссякаемым потоком?
По-видимому, дело в том, что электрон не только испускает, но и поглощает реоны, испущенные другими зарядами. Происходит постоянный обмен частицами. Предположив это, Ритц высказал впервые идею обменного взаимодействия, принятую поздней физикой, скажем, — в квантовой электродинамике (КЭД). Если применить образный язык древних атомистов, называвших микрочастицы семенами вещей, зёрнами материи (за их стандартные малые размеры, многочисленность и функцию первоосновы), то электрон, разбрасывающий реоны, подобен растению, скажем, — одуванчику, рассеивающему по всем направлениям споры, семена, дающие начало новым растениям, так же как реоны дают продолжение жизни другим электронам.
В процессе обмена реонами к электрону, взамен ушедших, со всех сторон приходят новые реоны. Бесчисленные электроны, разбросанные по бескрайним просторам Вселенной, своими поперечниками рано или поздно закроют собой окружающую электрон сферу некого, пусть и очень большого, радиуса R (Рис. 6). Тогда число электронов на сфере
P=4πR>2/πr>2.
От каждого электрона сферы к центральному электрону приходит ежесекундно Nr>2/4R>2 реонов (§ 1.4). Значит, в сумме со всей сферы к электрону придёт PNr>2/4R>2=N реонов. То есть электрон поглощает в единицу времени ровно столько реонов, сколько теряет. Всё как в известном парадоксе Ольберса (§ 2.5, § 2.6), по которому бескрайняя Вселенная со звёздами, не будь поглощения, стала бы подобна окружающему Солнце сферическому зеркалу (Рис. 6), сияющему в каждой точке столь же ярко, возвращая светилу весь излучённый им поток света [81].
Примерно так и все реоны, испущенные электроном, вернутся к нему, будто отражённые, переизлучённые гигантским зеркалом из роя вселенских электронов. Вдобавок и сходятся реоны к электрону в среднем с той же скоростью c, какую имели при вылете. Так что, несмотря на постоянную утечку реонов, электрон сохраняет неизменной и массу, и энергию. Электрон можно уподобить парящей капле жидкости в насыщенном паре (Рис. 9). Капля постоянно испаряется, ежесекундно выбрасывая миллиарды молекул жидкости и теряя вместе с ними массу и энергию. Но параллельно идёт процесс конденсации влаги: новые молекулы пара оседают на капле, возвращая ей массу и энергию. То есть капля пребывает в динамическом равновесии с паром. Вот и электрон параллельно испаряет и конденсирует реоны. Возможно, стандарт массы электрона задан ещё и тем, что он распадается, теряет реоны, лишь достигнув критической массы, подобно тому, как распадаются тяжёлые ядра. Поэтому электрон сохранял бы стандартный критический размер r>0, который не мог бы превысить.
Удивительно, но такую идею о постоянном выделении электроном комьев материи и динамическом поддержании его равновесного размера, равного критическому, выдвигал ещё Н. Тесла (§ 5.3) и за два тысячелетия до него Демокрит с Лукрецием (эпиграф § 3.11). Так же и Эпикур, рассуждая об источаемых телами светоносных частицах, писал в письме к Геродоту: "От поверхностей тел происходит непрерывное истечение, незаметное лишь потому, что умаление возмещается пополнением" [77]. Не случайно эти древние атомисты провозглашали почти слово в слово основную идею Ритца о непрестанном источении всеми телами во всех направлениях светоносных частиц (Часть 1, эпиграф). К той же идее, но на основе химических соображений, пришёл в 1902 г. и великий русский учёный Менделеев. Он показал, что материя, переносящая электромагнитные и гравитационные воздействия, представляет собой не сплошную неподвижную среду, типа эфира, а потоки стандартных частиц. По оценке Менделеева, данной в работе
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.