Автомобильные присадки и добавки - [51]

Шрифт
Интервал

Антидетонационные свойства пентакарбонила железа Fе(СО)>5 были обнаружены еще в 1924 году. В качестве антидетонатора он начал применяться в 1930–е годы в Германии в концентрации 2…2,5 мл/кг топлива. Однако через некоторое время его использование в этих целях было прекращено, так как при сгорании ПКЖ образовывались оксиды железа, нарушающие работу свечей зажигания; одновременно увеличивался износ стенок цилиндра двигателя и поршневых колец, о чем упоминалось несколько выше. Другой недостаток пентакарбонила железа — его склонность к быстрому разложению под действием света до нерастворимого нонкарбонила железа Fe(CO)>9. ПКЖ — светло — желтая жидкость с характерным запахом: плотность 1457 кг/м>3; температура кипения 102,2 °C; температура плавления 20 °C. При добавлении пентакарбонила железа к топливу прирост октанового числа на 15…20 % ниже, чем при использовании этиловой жидкости.

По антидетонационной эффективности близок к ПКЖ диизобутиленовый комплекс пентакарбонила железа (ДИБ — ПКЖ), который имеет формулу [Fe(СО)>5]>3>8Н>16]>5 (соотношение пентакарбонила и диизобутилена равно 3:5). ДИБ — ПКЖ — жидкость (плотность 955 кг/м3, температура кипения 27…32 °C), хорошо растворимая в органических растворителях.

Длительное время в нашей стране наиболее используемыми антидетонаторами являлись тетраэтилсвинец (ТЭС) {Pb(C2H5)4} и тетраметилсвинец Pb(CH3)4. Антидетонационная способность ТЭС открыта в 1921 году, а уже с 1923 года началось массовое промышленное производство этой присадки. Её действие заключается в обрыве цепных реакций образования пероксидов с выделением активных радикалов:

Pb(C2H5)4ORPb(C2H5)3· + C2H5·.

Эти радикалы инициируют окисление углеводородов, обычно стабильных в отсутствие тетраэтилсвинца. Образующиеся гидроперекиси способствуют более мягкому горению. Тем самым предотвращается или значительно снижается детонационное сгорание рабочей смеси. Однако одновременно образуется ряд окислов, наносящих большой вред экологии, так как свинец и его соединения являются канцерогенными веществами:

(C2H5)2Pb(OH)2; (C2H5)2Pb(OR)2; (C2H5)2PbOROH; PbO.

В чистом виде тетраэтилсвинец (тетраметилсвинец) не применяют, поскольку он вызывает освинцовывание деталей двигателя, т. е. происходит отложение продуктов сгорания (свинца и его оксидов) в камере сгорания, на днище поршня, клапанах, свечах и др. Они добавляются в бензин в виде этиловой (метиловой) жидкости, состоящей из тетраэтилсвинца (тетраметилсвинца), выносителя, антиокислителя, наполнителя и красителя.

Этиловая жидкость представляет собой бесцветную маслянистую жидкость плотностью 1650 кг/м3. Она нерастворима в воде, но растворима в бензине и органических растворителях, кипит с разложением при температуре 200 °C, легко воспламеняется и горит. Бензин, в который добавлена этиловая жидкость, называют этилированным. Для этилирования бензина используют этиловые жидкости марок Р-9 и П-2, которые различаются выносителем. Содержание тетраэтилсвинца в этиловых жидкостях составляет 54…58 %, выносителя — 33…35 %, наполнитель — остальное (авиационный бензин Б-70). Выноситель добавляют для удержания соединений свинца в газообразном состоянии. В качестве выносителя свинца используют галоидные органические соединения углеводородов (бромистый этил, монохлорнафталин, дибромэтан).

Наиболее эффективно добавление ТЭС массой до 0,50…0,80 г на 1 кг бензина, что позволяет увеличить его октановое число на 5…10 пунктов.

Присадки, которые содержат свинец, обладают наивысшей токсичностью, причем последняя увеличивается с ростом эффективности. В связи с высокой токсичностью отработавших газов автомобилей, работающих на этилированных бензинах, применение их в крупных городах с интенсивным автомобильным движением и в курортных зонах запрещено.

В настоящее время антидетонаторы на основе ТЭС в России полностью запрещены, так как ГОСТ Р 51105—97 предусматривает выпуск только неэтилированных бензинов. По ТУ 38.401–58–285—01 промышленность выпускает противоизносную присадку для неэтилированного бензина, предназначенную для защиты седла клапана двигателя от износа.

В качестве альтернативы этиловой жидкости, ферроценам и марганцу для повышения детонационной стойкости бензинов также используют соединения магния, меди и других металлов (промотров), имеющих высокий энергетический потенциал (табл. 15).

Табл. 15 Энергетический потенциал металлов (промотров), применяемых в октан-корректорах

Длительное время ведутся работы по изысканию неядовитых, но эффективных антидетонаторов. Например, компанией «Лукойл» для этих целей разработаны марганцевые соединения, такие как — «Хайтек-3000 (циклопентадиенилтрикарбонил, метилЦМТ).

Из антидетонаторов этого класса наиболее эффективны такие марганцевые антидетонаторы, как циклопентадиенилтрикарбонилмарганец (ЦТМ) — кристаллический желтый порошок С5Н5Мn(СО)3, а также метилциклопентадиэтилтрикарбонилмарганца (МЦТМ) — прозрачная маловязкая жидкость СН3С5Н4Mn(СО)3 светло — янтарного цвета с травянистым запахом, температурой кипения 233 °C, плотностью 1,3884 г/см3 и температурой застывания 1,5 °C. МЦТМ хорошо растворяется в бензине и практически не растворяется в воде.


Еще от автора Виктор Иванович Балабанов
Нанотехнологии. Правда и вымысел

Авторы книги знакомят читателей с относительно новым научно-практическим направлением знаний – нанонаукой – и уделяют большое внимание популяризаци и достижений нанотехнологий. В книге рассматриваются по большей части не какие-то фантастические проекты, а разработки, уже реально применяемые или находящиеся на этапе исследований. При чтении книги каждый сможет получить для себя некоторые неожиданные знания о взаимодействии наночастиц, имеющих размеры атомов и молекул, и сделать неожиданные открытия из удивительного мира нанотехнологий.В книге разрушаются многочисленные мифы и стереотипы, связанные с нанотехнологиями.


Рекомендуем почитать
Путешествие в Страну элементов

ОТ СОСТАВИТЕЛЕЙ Эта книга не учебник и тем более не химическая энциклопедия. Чтобы рассказать обо всех элементах периодической системы, даже останавливаясь лишь на их наиболее характерных чертах, потребовались бы целые тома. Поэтому маршрут нашего путешествия в Страну элементов проходит через ее главные «достопримечательности». Читатель познакомится с теми химическими элементами, которые составляют основное содержание неорганической химии и находят особенно большое применение в разных областях человеческой деятельности. Комсомол — заботливый и требовательный шеф большой химии — объявил Всесоюзный поход за знания.


Пути развития химии. Том 1. От первобытных времен до промышленной революции

Вопреки сложившейся традиции излагать историю науки как историю идей и теорий автор из ГДР В. Штрубе дает оригинальную трактовку развития науки: он стремится показать, как открытия, изобретения, накопление новых знаний и становление научной химии способствовали развитию общества. Для широкого круга читателей.


Карнавал молекул. Химия необычная и забавная

Книга в форме занимательных бесед предлагает интересные примеры и истории, которые позволят родителям привлечь внимание школьников к изучению естественных наук, преподавателям средней школы – сделать занятия более увлекательными, а также познакомит студентов и аспирантов, выбравших химию своей специальностью, с тем, как ход рассуждений исследователя позволяет получать интересные результаты. В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов.


Взятие сто четвертого

Книга раскрывает перед читателем удивительный мир науки физики, знакомит с известными у нас в стране и за рубежом учеными-физиками, сделавшими замечательные открытия, рассказывает об их творческом содружестве.


Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого

В книге рассказывается «о том, как устроена биосфера и что осталось от биосфер геологического прошлого». Показан основополагающий вклад В. И. Вернадского в учение о биосфере и о роли жизни в геологических процессах. Большое внимание уделяется новейшим научным открытиям, в частности удивительным оазисам жизни, обнаруженным в рифтовых зонах Мирового океана на глубине 1500—3000 м.Автор: А. В. ЛАПО — кандидат геолого-минералогических наук, старший научный сотрудник Всесоюзного научно-исследовательского геологического института имени А. П. Карпинского в Ленинграде.


Химический язык насекомых

В жизни насекомых чрезвычайно большую роль играют запахи. Общаясь между собой при помощи пахучих молекул-феромонов, шестиногие «рассказывают» об источнике пищи, образуют брачные пары, охраняют свое жилище, метят «владения». О том, как ученые разгадали тайну химического языка насекомых, синтезировали феромоны в лабораториях и разработали способы их практического применения, узнает читатель этой книги.Ее с увлечением прочтут те, кто интересуется прикладной энтомологией и вопросами охраны окружающей среды.