Автоматические космические аппараты - [12]
Так, например, система управления обеспечивает стабилизацию КА при работе корректирующе-тормозной двигательной установки в сеансах коррекции и торможения, суммирует приращение скорости для формирования главной команды на отключение корректирующе-тормозной двигательной установки. Кроме того, система управления на основе памяти ЭВМ (программы) создает разворот автоматического КА, используя исполнительные органы системы ориентации. Контроль за правильностью разворота осуществляется с помощью трехосной гиростабилизированной платформы. Все эти операции проводятся в сеансах как коррекции, так и торможения и фотографирования. Строго по меткам времени система управления выдает команды на включение различных систем КА с целью успешного выполнения маневра на орбите, производит введение различных программ в память ЭВМ, их контроль и хранение.
Система управления состоит из различных приборов и входящих в нее сложных подсистем. К ним относятся бортовые цифровые вычислительные машины, автомат стабилизации и различные подсистемы (приведения, обогрева, космической астронавигации, регулирования кажущейся скорости и т. д.). Для проведения коррекции орбиты КА предварительно, за 1 или 2 сут, проводится сеанс связи, при котором в память ЭВМ вводится программа. В ней задаются величины углов для разворота по трем перпендикулярным осям, величина скорости, получаемой КА от работы двигательной установки. Главное — вся программа жестко увязана по времени: задано время совершения разворота по той или иной оси, время окончания разворотов, точное время включения двигательной установки и целый ряд других данных, необходимых для проведения правильных и согласованных действий различных систем КА.
Во время проведения сеанса коррекции перед пуском корректирующе-тормозной двигательной установки система ориентации ориентирует КА в пространстве (по заложенной в ЭВМ программе) по угловым значениям разворотов по всем трем осям. Затем, при раскрутке роторов гироскопов, обеспечивается сохранность заданного положения автоматического КА в пространстве относительно его центра масс. При этом система ориентации отключается и стабилизация осуществляется от гиростабилизированной платформы.
Разворот КА требуется для придания двигательной установке требуемого направления для проведения коррекции. ЭВМ из своей памяти выдает в точно рассчитанное время команду на включение двигательной установки, интегратор системы управления суммирует приращение скорости и при достижении заданной всличины выдаст команду на выключение двигательной установки. Спустя некоторое время КА по программе ЭВМ вновь с помощью системы управления возвращается в первоначальное положение. Радиаторы системы терморегулирования и солнечная батарея вновь занимают правильное положение относительно Солнца.
Система управления КА на различных участках траектории полета выполняет задачи по управлению движением его центра масс, т. е. движением собственно автоматического КА — изменением скорости движения по траектории полета и изменением направления движения (коррекции траектории полета, переход с пролетной траектории на орбиту спутника планеты и т. д.). Управление же движением КА относительно центра масс (развороты и вращение КА) — это задача ориентации, и с этим как раз и справляется система ориентации.
Только в сеансах коррекции, торможения и некоторых других специфических условиях полета система управления, как правило, решает эти задачи. Система ориентации в этих случаях отключается, но ее исполнительные органы продолжают работать.
Система управления решает также задачу по запланированному входу КА в атмосферу планеты с допустимыми перегрузками. Так, спускаемый аппарат ИСЗ (например, биологического) после полета по околоземной орбите с первой космической скоростью, равной примерно 8 км/с, под малым углом входит в атмосферу. При спуске по баллистической траектории КА испытывает перегрузку в 8-10 g. Если же вход в атмосферу происходит под большим углом, то перегрузки становятся еще больше из-за резкого торможения. Так, например, при входе со второй космической скоростью спускаемого аппарата станции «Вснсра-4» в атмосферу Венеры под большим углом перегрузки достигали около 400 g. В то же время возвращаемый аппарат автоматической станции «Зонд» после облета Луны входил по баллистической траектории в атмосферу Земли со скоростью входа около 11 км/с. Посадка в заданном районе и приемлемый режим аэродинамического торможения-с перегрузками 10–16 g стали возможны благодаря совершенству и точности работы системы управления. Последняя с большой точностью обеспечила условия входа в атмосферу Земли пол углом 5–6° к плоскости местного горизонта.
Для межпланетных станций система управления выполняет сложные действия по разделению частей автоматического КА и управляет их дальнейшим движением. Так, например, станция «Венера-10» за 2 сут до подлета к планете должна была отделить спускаемый аппарат (рис. 2). Полет при этом происходил по «попадающей» траектории, т. е. станция сближалась с Венерой и вошла в ее атмосферу (что для спускаемого аппарата было даже и необходимо). Но затем орбитальный отсек станции, отделив спускаемый аппарат по команде, поступившей от системы управления, развернулся. В расчетное время система управления включила двигательную установку на заданный интервал времени, позволивший осуществить переход на новую пролетную траекторию.
Создание спускаемых аппаратов ознаменовало собой новый этап в развитии космонавтики, связанный с началом пилотируемых полетов в космос и существенным прогрессом в космических исследованиях далеких тел Солнечной системы. Об этих аппаратах, их конструкции, системах и назначении и рассказывается в брошюре.Брошюра рассчитана на широкий круг читателей, интересующихся современными проблемами космической техники.
"Цель всякой проповеди, один из видов которой составляет и настоящее мое чтение, заключается в том, чтобы возбудить в слушателях или читателях отвращение или сочувствие к обсуждаемому предмету. Предметом моего чтения будет служить самоубийство или произвольное лишение человеком жизни себя самого. Это явление такого рода, что одним своим именем в людях, не склонных к самоубийству, вызывает отвращение... Вообще, в каждом грехе единичного человека бывает виновен не сам только человек согрешающий, но и окружающие его люди, совокупность мыслей, в которых он вращается, обстановка, в которой он живет.
В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!
Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.