Атомный проект. Жизнь за «железным занавесом» - [37]
На праздновании 70-летия профессора Б. Валена (Франция), 1982 г. Бруно Понтекорво поздравляет юбиляра
Представьте себе, что антинейтрино встречается с протоном — ядром атома водорода. Что произойдет при этом?
Теория утверждает: будут случаи, когда антинейтрино и протон превратятся в позитрон и нейтрон:
Вероятность этого процесса можно хорошо рассчитать. А регистрируя его в эксперименте, можно одновременно проверить гипотезу существования нейтрино.
Разумеется, для эксперимента необходим очень мощный источник «неуловимых» частиц. Но упоминавшийся нами реактор мощностью в 300 тысяч киловатт вполне пригоден для этой цели. На расстоянии 10 метров от него ожидаемый поток антинейтрино через каждый квадратный сантиметр составит примерно 1013 частиц в секунду. Такой поток антинейтрино, бомбардирующих тонну содержащего водород вещества (иначе говоря, запас протонов), по расчету должен каждый час вызывать около 100 превращений протонов в нейтроны.
И это предвидение сбылось. Оно подтвердилось в блестящем опыте, законченном в 1957 г. американскими физиками Райнесом и Коуэном. Антинейтрино попадали в огромный сцинтилляционный счетчик — цистерну с содержащим водород веществом, способным испускать вспышку света (сцинтилляцию), когда сквозь него проходит электрически заряженная частица. Каждую такую вспышку регистрировали фотоэлементы.
Эксперимент проходил так. Как только протон, которому выпала крайне редкая судьба встретиться с антинейтрино, превращался в нейтрон и позитрон, последний давал вспышку и регистрировался фотоэлементами. Через некоторое время нейтрон замедлялся и, когда он становился совсем медленным, захватывался одним из ядер атомов вещества счетчика. При этом рождались кванты электромагнитного излучения, которые регистрировались в том же сцинтилляторе. Таким образом, каждое взаимодействие антинейтрино с протоном влекло за собой две вспышки света. Одна из них фиксировалась сразу же, а другая — с некоторой задержкой.
Опыт был необычайно трудным. Достаточно сказать, что объем сцинтиллятора примерно в тысячу раз превышал обычный объем подобных устройств, используемых в исследовательских работах по ядерной физике. Это было вызвано тем, что благодаря «инертности» антинейтрино меньший объем прибора привел бы к очень незначительному числу регистрируемых событий.
Подготовка и выполнение этого уникального эксперимента потребовали более пяти лет.
Так «вор энергии» был наконец пойман. Он занимает сейчас прочное место в семье фундаментальных кирпичиков материи.
От всех других элементарных частиц нейтрино отличается чрезвычайно слабым взаимодействием с ними. Это объясняет и астрономическую проникающую способность нейтрино. Такое слабое взаимодействие могут испытывать и все другие элементарные частицы. Однако последние, кроме слабых взаимодействий, испытывают и иные, несравнимо более сильные, так что их проникающая способность измеряется, скажем, только десятками сантиметров чугуна.
Нейтрино уникально тем, что у него только слабое взаимодействие, чистейшим представителем которого оно является.
Сильные и слабые взаимодействия элементарных частиц
Читателю знакомы разные по своей природе силы, проявляющиеся во взаимодействиях между телами. Но глубоко различающихся в принципе типов взаимодействия очень мало. Если не считать тяготения, которое играет существенную роль только в присутствии огромных масс, то известны лишь три вида взаимодействий: сильные, электромагнитные и слабые.
Электромагнитные взаимодействия всем знакомы. Благодаря им движущийся неравномерно электрический заряд (скажем, электрон в атоме) испускает электромагнитные волны (например, видимый свет). С этим классом взаимодействий связаны все химические процессы, а также все молекулярные явления — поверхностное натяжение, капиллярность, адсорбция, текучесть. Электромагнитные взаимодействия, теория которых блестяще подтверждается опытом, глубоко связаны с электрическим зарядом элементарных частиц.
Сильные взаимодействия стали известны только после раскрытия внутренней структуры атомного ядра. В 1932 г. было обнаружено, что оно состоит из нуклонов, нейтронов и протонов. И именно сильные взаимодействия соединяют нуклоны в ядре — отвечают за ядерные силы, которые в отличие от электромагнитных характеризуются очень малым радиусом действия (около 10−13, т. е. одной десятитриллионной доли сантиметра) и большой интенсивностью. Кроме этого, сильные взаимодействия появляются при столкновениях частиц высоких энергий с участием пионов и так называемых «странных» частиц.
Интенсивность взаимодействий удобно оценивать по так называемой длине свободного пробега частиц в некотором веществе, т. е. по средней величине пути, который частица может пройти в этом веществе до разрушающего или сильно отклоняющего соударения. Ясно, что чем больше длина свободного пробега, тем менее интенсивно взаимодействие.
Если рассматривать частицы очень высокой энергии, то соударения, обусловленные сильными взаимодействиями, характеризуются длиной свободного пробега частиц, соответствующей по порядку величины десяткам сантиметров в меди или железе.
21 мая 1980 года исполняется 100 лет со дня рождения замечательного румынского поэта, прозаика, публициста Тудора Аргези. По решению ЮНЕСКО эта дата будет широко отмечена. Писатель Феодосий Видрашку знакомит читателя с жизнью и творчеством славного сына Румынии.
В этой книге рассказывается о жизни и деятельности виднейшего борца за свободную демократическую Румынию доктора Петру Грозы. Крупный помещик, владелец огромного состояния, широко образованный человек, доктор Петру Гроза в зрелом возрасте порывает с реакционным режимом буржуазной Румынии, отказывается от своего богатства и возглавляет крупнейшую крестьянскую организацию «Фронт земледельцев». В тесном союзе с коммунистами он боролся против фашистского режима в Румынии, возглавил первое в истории страны демократическое правительство.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Лина Кавальери (1874-1944) – божественная итальянка, каноническая красавица и блистательная оперная певица, знаменитая звезда Прекрасной эпохи, ее называли «самой красивой женщиной в мире». Книга состоит из двух частей. Первая часть – это мемуары оперной дивы, где она попыталась рассказать «правду о себе». Во второй части собраны старинные рецепты натуральных средств по уходу за внешностью, которые она использовала в своем парижском салоне красоты, и ее простые, безопасные и эффективные рекомендации по сохранению молодости и привлекательности. На русском языке издается впервые. В формате PDF A4 сохранен издательский макет книги.
Повествование описывает жизнь Джованны I, которая в течение полувека поддерживала благосостояние и стабильность королевства Неаполя. Сие повествование является продуктом скрупулезного исследования документов, заметок, писем 13-15 веков, гарантирующих подлинность исторических событий и описываемых в них мельчайших подробностей, дабы имя мудрой королевы Неаполя вошло в историю так, как оно того и заслуживает. Книга является историко-приключенческим романом, но кроме описания захватывающих событий, присущих этому жанру, можно найти элементы философии, детектива, мистики, приправленные тонким юмором автора, оживляющим историческую аккуратность и расширяющим круг потенциальных читателей. В формате PDF A4 сохранен издательский макет.
В этой книге рассказано о некоторых первых агентах «Искры», их жизни и деятельности до той поры, пока газетой руководил В. И. Ленин. После выхода № 52 «Искра» перестала быть ленинской, ею завладели меньшевики. Твердые искровцы-ленинцы сложили с себя полномочия агентов. Им стало не по пути с оппортунистической газетой. Они остались верными до конца идеям ленинской «Искры».