Астрономия для «чайников» - [61]

Шрифт
Интервал

Рис. 10.2. Солнце — это источник энергии для Солнечной системы


На расстоянии примерно 494 000 км (примерно 71 % расстояния от центра до поверхности) ядро переходит в следующую основную зону, которая называется зоной конвекции. Здесь мощные потоки газа переносят генерируемую в ядре энергию наружу. Горячие потоки газа поднимаются вверх, перенося с собой тепловую энергию; затем, по мере набора высоты, они охлаждаются и снова опускаются вниз. Точно так же происходит процесс переноса тепла со дна чайника с кипящей водой на поверхность и образования облаков в атмосфере Земли. Ученые, изучающие Солнце, считают, что его магнитное поле, причина появления солнечных пятен и взрывов различного рода в верхних слоях солнечной атмосферы, генерируется внизу зоны конвекции.

 Внутри солнечного ядра тоже есть отдельные зоны. Внутренняя часть генерирующего энергию ядра простирается на 173 000 км от центра. А остальная, внешняя часть ядра называется излучающей зоной.


Температура внизу конвекционной зоны — 2,2 миллиона градусов Цельсия. Над этой зоной находится видимая поверхность Солнца, которая называется фотосферой (т. е. "сфера света"). Это слой газа с температурой примерно 5500 °C, который создает весь видимый свет Солнца. Темные пятна на фотосфере называются солнечными пятнами; это детали Солнца, которые увидеть легче всего.

Глядя на яркий диск Солнца — разумеется, строго соблюдая технику безопасности (об этом я расскажу в этой главе), вы на самом деле видите часть фотосферы.

Следующие, верхние зоны над фотосферой Солнца горячее, а не холоднее, чем нижние. Это одна из самых больших тайн Солнца, над которой астрономы бьются уже на протяжении многих десятилетий. Хромосфера, или цветовая сфера, находится прямо над фотосферой. Ее толщина — примерно 1000 км, а температура достигает 10 000 °C.

 Хромосферу можно увидеть на краешке Солнца, если использовать дорогой Н-альфа фильтр (о нем я более подробно расскажу в этой главе во врезке "Если цена не имеет значения, то можно увидеть больше") или посмотреть изображения, сделанные с помощью профессионального телескопа и отображенные на Web-сайтах NASA и NOAA (см. раздел "Изображения Солнца в Web"), а также на различных Web-сайтах профессиональных обсерваторий. Хромосферу можно также увидеть во время полного затмения Солнца (об этом тоже речь пойдет в этой главе). Во время затмения хромосфера может выглядеть в виде тонкой красной полоски по контуру Луны, которая закроет собой свет фотосферы.


Над хромосферой находится корона, состоящая из газа настолько разреженного и электризованного, что ее форму определяет магнитное поле Солнца. Там, где линии магнитного поля вытягиваются и выходят в космическое пространство, слой газа короны очень тонок и едва виден. Он легко высвобождается и превращается в солнечный ветер. А там, где линии магнитного поля достигают короны, а затем опускаются на поверхность, они удерживают газ короны. Здесь его слой толще и ярче. Температура короны достигает миллиона градусов Цельсия, а в некоторых местах даже превышает этот уровень.

 Между хромосферой и короной, которая в сотни раз горячее, находится очень тонкий граничный слой, который называется областью перехода. Но увидеть этот слой чрезвычайно трудно.

Солнечный ветер

Солнечный ветер — это поток ионизованной водородной плазмы, т. е. газа, состоящего из электронов и протонов примерно одинаковой плотности, который движется от Солнца со сверхзвуковой скоростью; на орбите Земли его скорость составляет примерно 470 км/с.

Солнечный ветер — это поток заряженных частиц, которые постоянно возмущают и пополняют магнитосферу Земли. (Магнитосфера — это огромный окружающий Землю слой, в котором электроны, протоны и другие заряженные частицы перемещаются от высоких северных широт к высоким южным, захваченные магнитным полем Земли.) Как уже говорилось в главе 5, магнитосферу сначала называли поясами Ван-Аллена, в честь Джеймса Ван-Аллена из Университета Айовы, открывшего этот слой с помощью первого американского искусственного спутника Explorer-1.

Магнитосфера Земли испытывает постоянные возмущения из-за изменчивой природы солнечного ветра и солнечных бурь, которые деформируют ее после вспышек на Солнце. Магнитосфера сжимается и снова расширяется; ее изменения вызывают геомагнитные бури, которые, в свою очередь, возмущают окружающую среду на Земле.

Солнечная активность и солнечные циклы

На Солнце время от времени случаются разнообразные возмущения, включая те, которые происходят вблизи групп солнечных вспышек (о них мы поговорим еще в этой главе). Некоторые виды солнечной активности оказывают влияние на Землю.

Солнечные вспышки в большинстве случаев нельзя увидеть в любительский телескоп, но зато они отлично видны в телескопы, установленные на спутниках. Эти вспышки выбрасывают сгустки солнечной плазмы весом в миллиарды тонн в Солнечную систему, где некоторые из них сталкиваются с защитным "магнитным зонтиком" Земли — ее магнитосферой. В результате этого взаимодействия на Земле возникают северные и южные полярные сияния, а также геомагнитные бури. Эти бури могут привести к неприятным последствиям: сбоям в работе электросетей (и отсутствию электрического освещения), сбоям в электронных системах на газо- и нефтепроводах, помехам радиосвязи, а также нарушению нормального функционирования искусственных спутников.


Рекомендуем почитать
Орбита жизни

Вам, конечно, кажется, что вы знаете буквально все о первом космонавте планеты Земля? Вы ошибаетесь. В этом вы сможете убедиться, прочитав новую книгу молодого писателя Олега Куденко «Орбита жизни», ярко, по-новому раскрывающую подвиг советского народа и его славного сына — Героя Советского Союза Ю. А. Гагарина. Вы знаете, как курсант Гагарин тушил пожар? Как получил он свое первое и единственное взыскание? Как он едва не разбился в ночном полете над морем? Да и сам полет в космосе!.. Вы еще очень мало знаете о нем! Работая над рукописью, О. Куденко побывал в местах, связанных с судьбой его героя, встретился со множеством людей, прошел основные космические тренировки.


Геологи изучают планеты

В популярной форме изложены последние данные по геологии Луны, Марса, Венеры; описаны материки и океаны на этих космических телах, процессы оледенения, пыльные бури, гигантские трещины и т. д. Подчеркивается, что знание геологии других планет помогает исследователю разобраться в некоторых сложных проблемах геологического развития Земли, особенно ее ранних стадий.


Самые первые

Летчик-космонавт СССР, командир космического корабля «Союз-6» рассказывает о том, как создавался первый отряд космонавтов, о сложном и требовательном отборе, через который пришлось пройти каждому, но далеко не каждому удалось успешно выдержать все испытания и слетать в космос. О судьбах этих людей откровенно и глубоко повествует книга. Читатели узнают интересные подробности о полетах первых советских космонавтов. Книга посвящается пятнадцатилетию первого старта человека в космос.


Стойкость. Мой год в космосе

Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.


Серебристые облака и их наблюдение

В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.