Архитектура операционной системы UNIX - [191]
сигнал тревоги
SIGTERM завершение программы
SIGUSR1 сигнал, определяемый пользователем
SIGUSR2 второй сигнал, определяемый пользователем
SIGCLD гибель потомка
SIGPWR отказ питания
Параметр function интерпретируется следующим образом:
SIG_DFL действие по умолчанию. Означает завершение процесса в случае поступления любых сигналов, за исключением SIGPWR и SIGCLD. Если сигнал имеет тип SIGQUIT, SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV или SIGSYS, создается файл "core", содержащий дамп образа процесса в памяти
SIG_IGN игнорировать поступление сигнала функция адрес процедуры в пространстве процесса. По возвращении в режим задачи производится обращение к указанной функции с передачей ей номера сигнала в качестве аргумента. Если сигнал имеет тип, отличный от SIGILL, SIGTRAP и SIGPWR, ядро автоматически переустанавливает имя программы обработки сигнала в SIG_DFL. Сигналы типа SIGKILL процессом не обрабатываются
stat
stat(filename, statbuf)
char *filename;
struct stat *statbuf;
fstat(fd, statbuf)
int fd;
struct stat *statbuf;
Функция stat возвращает информацию о статусе (состоянии) указанного файла. Функция fstat выполняет то же самое в отношении открытого файла, имеющего дескриптор fd. Структура statbuf определена следующим образом:
struct stat {
dev_t st_dev; /* номер устройства, на котором находится файл */
ino_t st_ino; /* номер индекса */
ushort st_mode; /* тип файла (см. mknod) и права доступа к нему (см. chmod) */
short st_nlink; /* число связей, указывающих на файл */
ushort st_uid; /* код идентификации владельца файла */
ushort st_gid; /* код идентификации группы */
dev_t st_rdev; /* старший и младший номера устройства */
off_t st_size; /* размер в байтах */
time_t st_atime; /* время последнего обращения */
time_t st_mtime; /* время последнего внесения изменений */
time_t st_ctime; /* время последнего изменения статуса */
};
stimе
stime(tptr)
long *tptr;
Функция stime устанавливает системное время и дату в соответствие со значением, указанным в параметре tptr. Время указывается в секундах от 00:00:00 1 января 1970 года по Гринвичу.
synс
sync()
Функция sync выгружает содержащуюся в системных буферах информацию (относящуюся к файловой системе) на диск.
timе
time(tloc)
long *tloc;
Функция time возвращает системное время в секундах от 00:00:00 1 января 1970 года по Гринвичу.
times
#include ‹sys/types.h›
#include ‹sys/times.h›
times(tbuf)
struct tms *tbuf;
Функция times возвращает время в таймерных тиках, реально прошедшее с любого произвольного момента в прошлом, и заполняет буфер tbuf следующей учетной информацией:
struct tms {
time_t tms_utime; /* продолжительность использования ЦП в режиме задачи */
time_t tms_stime; /* продолжительность использования ЦП в режиме ядра */
time_t tms_cutime; /* сумма значений tms_utime и tms_cutime у потомков */
time_t tms_sutime; /* сумма значений tms_stime и tms_sutime у потомков */
};
ulimit
ulimit(cmd, limit)
int cmd;
long limit;
Функция ulimit дает процессу возможность устанавливать различные ограничения в зависимости от значения параметра cmd:
1 вернуть максимальный размер файла (в блоках по 512 байт), в который процесс может вести запись
2 установить ограничение сверху на размер файла равным значению параметра limit
3 вернуть значение верхней точки прерывания (максимальный доступный адрес в области данных)
uмask
umask(mask)
int mask;
Функция umask устанавливает значение маски, описывающей режим создания файла (mask), и возвращает старое значение. При создании файла биты разрешения доступа, которым соответствуют установленные разряды в mask, будут сброшены.
uмount
umount(specialfile)
char *specialfile
Функция umount выполняет демонтирование файловой системы, расположенной на устройстве ввода-вывода блоками specialfile.
unamе
#include ‹sys/utsname.h›
uname(name)
struct utsname *name;
Функция uname возвращает информацию, идентифицирующую систему в соответствии со следующей структурой:
struct utsname {
char sysname[9]; /* наименование */
char nodename[9]; /* имя сетевого узла */
char release[9]; /* информация о версии системы */
char version[9]; /* дополнительная информация о версии */
char machine[9]; /* технический комплекс */
};
unlink
unlink(filename)
char *filename;
Функция unlink удаляет из каталога запись об указанном файле.
ustat
#include ‹sys/types.h›
#include ‹ustat.h›
ustat(dev, ubuf)
int dev;
struct ustat *ubuf;
Функция ustat возвращает статистические данные, характеризующие файловую систему с идентификатором dev (старший и младший номера устройства). Структура ustat определена следующим образом:
struct ustat {
daddr_t f_tfree; /* количество свободных блоков */
ino_t f_tinode; /* количество свободных индексов */
char f_fname[6]; /* наименование файловой системы */
char f_fpack[6]; /* сокращенное (упакованное) имя файловой системы */
};
utimе
#include ‹sys/types.h›
utime(filename, times)
char *filename;
struct utimbuf *times;
Функция utime переустанавливает время последнего обращения к указанному файлу и последнего внесения изменений в соответствии со значениями, на которые указывает параметр times. Если параметр содержит нулевое значение, используется текущее время. В противном случае параметр указывает на следующую структуру:
Одно из немногих изданий на русском языке, которое посвящено старейшей глобальной компьютерной сети "Fidonet". Сатирический справочник о жизни и смерти самого древнего сетевого сообщества, которое до сих пор существует среди нас.
В пособии излагаются основные тенденции развития организационного обеспечения безопасности информационных систем, а также подходы к анализу информационной инфраструктуры организационных систем и решению задач обеспечения безопасности компьютерных систем.Для студентов по направлению подготовки 230400 – Информационные системы и технологии (квалификация «бакалавр»).
В книге американских авторов — разработчиков операционной системы UNIX — блестяще решена проблема автоматизации деятельности программиста, системной поддержки его творчества, выходящей за рамки языков программирования. Профессионалам открыт богатый "встроенный" арсенал системы UNIX. Многочисленными примерами иллюстрировано использование языка управления заданиями shell.Для программистов-пользователей операционной системы UNIX.
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса.
Применение виртуальных машин дает различным категориям пользователей — от начинающих до IT-специалистов — множество преимуществ. Это и повышенная безопасность работы, и простота развертывания новых платформ, и снижение стоимости владения. И потому не случайно сегодня виртуальные машины переживают второе рождение.В книге рассмотрены три наиболее популярных на сегодняшний день инструмента, предназначенных для создания виртуальных машин и управления ими: Virtual PC 2004 компании Microsoft, VMware Workstation от компании VMware и относительно «свежий» продукт — Parallels Workstation, созданный в компании Parallels.
Книга содержит подробные сведения о таких недокументированных или малоизвестных возможностях Windows XP, как принципы работы с программами rundll32.exe и regsvr32.exe, написание скриптов сервера сценариев Windows и создание INF-файлов. В ней приведено описание оснасток, изложены принципы работы с консолью управления mmc.exe и параметрами реестра, которые изменяются с ее помощью. Кроме того, рассмотрено большое количество средств, позволяющих выполнить тонкую настройку Windows XP.Эта книга предназначена для опытных пользователей и администраторов, которым интересно узнать о нестандартных возможностях Windows.