Архитектура операционной системы UNIX - [178]
Если производится обращение к системной функции open, периферийный процесс посылает своему спутнику соответствующее сообщение, которое включает имя файла и другие параметры. В случае успеха процесс-спутник выделяет индекс и точку входа в таблицу файлов, отводит запись в таблице пользовательских дескрипторов файла в своем пространстве и возвращает дескриптор файла периферийному процессу. Все это время на другом конце линии связи периферийный процесс ждет ответа. У него в распоряжении нет никаких структур, которые хранили бы информацию об открываемом файле; возвращаемый функцией open дескриптор представляет собой указатель на запись в таблице пользовательских дескрипторов файла, принадлежащей процессу-спутнику. Результаты выполнения функции показаны на Рисунке 13.4.
Рисунок 13.4. Вызов функции open из периферийного процесса
Если производится обращение к системной функции write, периферийный процессор формирует сообщение, состоящее из признака функции write, дескриптора файла и объема записываемых данных. Затем из пространства периферийного процесса он по линии связи копирует данные процессу-спутнику. Процесс-спутник расшифровывает полученное сообщение, читает данные из линии связи и записывает их в соответствующий файл (в качестве указателя на индекс которого и запись о котором в таблице файлов используется содержащийся в сообщении дескриптор); все указанные действия выполняются на центральном процессоре. По окончании работы процесс-спутник передает периферийному процессу посылку, подтверждающую прием сообщения и содержащую количество байт данных, успешно переписанных в файл. Операция read выполняется аналогично; спутник информирует периферийный процесс о количестве реально прочитанных байт (в случае чтения данных с терминала или из канала это количество не всегда совпадает с количеством, указанным в запросе). Для выполнения как той, так и другой функции может потребоваться многократная пересылка информационных сообщений по сети, что определяется объемом пересылаемых данных и размерами сетевых пакетов.
Единственной функцией, требующей внесения изменений при работе на центральном процессоре, является системная функция fork. Когда процесс исполняет эту функцию на ЦП, ядро выбирает для него периферийный процессор и посылает сообщение специальному процессу — серверу, информируя последний о том, что собирается приступить к выгрузке текущего процесса. Предполагая, что сервер принял запрос, ядро с помощью функции fork создает новый периферийный процесс, выделяя запись в таблице процессов и адресное пространство. Центральный процессор выгружает копию процесса, вызвавшего функцию fork, на периферийный процессор, затирая только что выделенное адресное пространство, порождает локальный спутник для связи с новым периферийным процессом и посылает на периферию сообщение о необходимости инициализации счетчика команд для нового процесса. Процесс-спутник (на ЦП) является потомком процесса, вызвавшего функцию fork; периферийный процесс с технической точки зрения выступает потомком процесса-сервера, но по логике он является потомком процесса, вызвавшего функцию fork. Процесс-сервер не имеет логической связи с потомком по завершении функции fork; единственная задача сервера состоит в оказании помощи при выгрузке потомка. Из-за сильной связи между компонентами системы (периферийные процессоры не располагают автономией) периферийный процесс и процесс-спутник имеют один и тот же код идентификации. Взаимосвязь между процессами показана на Рисунке 13.5: непрерывной линией показана связь типа "родитель-потомок", пунктиром — связь между равноправными партнерами.
Рисунок 13.5. Выполнение функции fork на центральном процессоре
Когда процесс исполняет функцию fork на периферийном процессоре, он посылает сообщение своему спутнику на ЦП, который и исполняет после этого всю вышеописанную последовательность действий. Спутник выбирает новый периферийный процессор и делает необходимые приготовления к выгрузке образа старого процесса: посылает периферийному процессу-родителю запрос на чтение его образа, в ответ на который на другом конце канала связи начинается передача запрашиваемых данных. Спутник считывает передаваемый образ и переписывает его периферийному потомку. Когда выгрузка образа заканчивается, процесс-спутник исполняет функцию fork, создавая своего потомка на ЦП, и передает значение счетчика команд периферийному потомку, чтобы последний знал, с какого адреса начинать выполнение. Очевидно, было бы лучше, если бы потомок процесса-спутника назначался периферийному потомку в качестве родителя, однако в нашем случае порожденные процессы получают возможность выполняться и на других периферийных процессорах, а не только на том, на котором они созданы. Взаимосвязь между процессами по завершении функции fork показана на Рисунке 13.6. Когда периферийный процесс завершает свою работу, он посылает соответствующее сообщение процессу-спутнику и тот тоже завершается. От процесса-спутника инициатива завершения работы исходить не может.
Рисунок 13.6. Выполнение функции fork на периферийном процессоре
Одно из немногих изданий на русском языке, которое посвящено старейшей глобальной компьютерной сети "Fidonet". Сатирический справочник о жизни и смерти самого древнего сетевого сообщества, которое до сих пор существует среди нас.
В пособии излагаются основные тенденции развития организационного обеспечения безопасности информационных систем, а также подходы к анализу информационной инфраструктуры организационных систем и решению задач обеспечения безопасности компьютерных систем.Для студентов по направлению подготовки 230400 – Информационные системы и технологии (квалификация «бакалавр»).
В книге американских авторов — разработчиков операционной системы UNIX — блестяще решена проблема автоматизации деятельности программиста, системной поддержки его творчества, выходящей за рамки языков программирования. Профессионалам открыт богатый "встроенный" арсенал системы UNIX. Многочисленными примерами иллюстрировано использование языка управления заданиями shell.Для программистов-пользователей операционной системы UNIX.
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса.
Применение виртуальных машин дает различным категориям пользователей — от начинающих до IT-специалистов — множество преимуществ. Это и повышенная безопасность работы, и простота развертывания новых платформ, и снижение стоимости владения. И потому не случайно сегодня виртуальные машины переживают второе рождение.В книге рассмотрены три наиболее популярных на сегодняшний день инструмента, предназначенных для создания виртуальных машин и управления ими: Virtual PC 2004 компании Microsoft, VMware Workstation от компании VMware и относительно «свежий» продукт — Parallels Workstation, созданный в компании Parallels.
Книга содержит подробные сведения о таких недокументированных или малоизвестных возможностях Windows XP, как принципы работы с программами rundll32.exe и regsvr32.exe, написание скриптов сервера сценариев Windows и создание INF-файлов. В ней приведено описание оснасток, изложены принципы работы с консолью управления mmc.exe и параметрами реестра, которые изменяются с ее помощью. Кроме того, рассмотрено большое количество средств, позволяющих выполнить тонкую настройку Windows XP.Эта книга предназначена для опытных пользователей и администраторов, которым интересно узнать о нестандартных возможностях Windows.