Архитектура операционной системы UNIX - [141]

Шрифт
Интервал

Два типа дискового интерфейса различаются между собой по использованию буферного кеша. При работе с блочным интерфейсом ядро пользуется тем же алгоритмом, что и для файлов обычного типа, исключение составляет тот момент, когда после преобразования адреса смещения логического байта в адрес смещения логического блока (см. алгоритм bmap в главе 4) оно трактует адрес смещения логического блока как физический номер блока в файловой системе. Затем, используя буферный кеш, ядро обращается к данным, и, в конечном итоге, к стратегическому интерфейсу драйвера. Однако, при обращении к диску через символьный интерфейс (без структурирования данных), ядро не превращает адрес смещения в адрес файла, а передает его немедленно драйверу, используя для передачи рабочее пространство задачи. Процедуры чтения и записи, входящие в состав драйвера, преобразуют смещение в байтах в смещение в блоках и копируют данные непосредственно в адресное пространство задачи, минуя буферы ядра.

Таким образом, если один процесс записывает на устройство блочного типа, а второй процесс затем считывает с устройства символьного типа по тому же адресу, второй процесс может не считать информацию, записанную первым процессом, так как информация может еще находиться в буферном кеше, а не на диске. Тем не менее, если второй процесс обратится к устройству блочного типа, он автоматически попадет на новые данные, находящиеся в буферном кеше.

При использовании символьного интерфейса можно столкнуться со странной ситуацией. Если процесс читает или пишет на устройство посимвольного ввода-вывода порциями меньшего размера, чем, к примеру, блок, результаты будут зависеть от драйвера. Например, если производить запись на ленту по 1 байту, каждый байт может попасть в любой из ленточных блоков.

Преимущество использования символьного интерфейса состоит в скорости, если не возникает необходимость в кешировании данных для дальнейшей работы. Процессы, обращающиеся к устройствам ввода — вывода блоками, передают информацию блоками, размер каждого из которых ограничивается размером логического блока в данной файловой системе. Например, если размер логического блока в файловой системе 1 Кбайт, за одну операцию ввода-вывода может быть передано не больше 1 Кбайта информации. При этом процессы, обращающиеся к диску с помощью символьного интерфейса, могут передавать за одну дисковую операцию множество дисковых блоков, в зависимости от возможностей дискового контроллера. С функциональной точки зрения, процесс получает тот же самый результат, но символьный интерфейс может работать гораздо быстрее. Если воспользоваться примером, приведенным на Рисунке 10.8, можно увидеть, что когда процесс считывает 4096 байт, используя блочный интерфейс для файловой системы с размером блока 1 Кбайт, ядро производит четыре внутренние итерации, на каждом шаге обращаясь к диску, прежде чем вызванная системная функция возвращает управление, но когда процесс использует символьный интерфейс, драйвер может закончить чтение за одну дисковую операцию. Более того, использование блочного интерфейса вызывает дополнительное копирование данных между адресным пространством задачи и буферами ядра, что отсутствует в символьном интерфейсе.

10.3 ТЕРМИНАЛЬНЫЕ ДРАЙВЕРЫ

Терминальные драйверы выполняют ту же функцию, что и остальные драйверы: управление передачей данных от и на терминалы. Однако, терминалы имеют одну особенность, связанную с тем, что они обеспечивают интерфейс пользователя с системой. Обеспечивая интерактивное использование системы UNIX, терминальные драйверы имеют свой внутренний интерфейс с модулями, интерпретирующими ввод и вывод строк. В каноническом режиме интерпретаторы строк преобразуют неструктурированные последовательности данных, введенные с клавиатуры, в каноническую форму (то есть в форму, соответствующую тому, что пользователь имел ввиду на самом деле) прежде, чем послать эти данные принимающему процессу; строковый интерфейс также преобразует неструктурированные последовательности выходных данных, созданных процессом, в формат, необходимый пользователю. В режиме без обработки строковый интерфейс передает данные между процессами и терминалом без каких-либо преобразований.

Программисты, например, работают на клавиатуре терминала довольно быстро, но с ошибками. На этот случай терминалы имеют клавишу стирания ("erase"; клавиша может быть обозначена таким образом), чтобы пользователь имел возможность стирать часть введенной строки и вводить коррективы. Терминалы пересылают машине всю введенную последовательность, включая и символы стирания[32]. В каноническом режиме строковый интерфейс буферизует информацию в строки (набор символов, заканчивающийся символом возврата каретки[33]) и процессы стирают символы у себя, прежде чем переслать исправленную последовательность считывающему процессу.

В функции строкового интерфейса входят:

• построчный разбор введенных последовательностей;

• обработка символов стирания;

• обработка символов "удаления", отменяющих все остальные символы, введенные до того в текущей строке;


Рекомендуем почитать
Это ваше Fido

Одно из немногих изданий на русском языке, которое посвящено старейшей глобальной компьютерной сети "Fidonet". Сатирический справочник о жизни и смерти самого древнего сетевого сообщества, которое до сих пор существует среди нас.


Безопасность информационных систем

В пособии излагаются основные тенденции развития организационного обеспечения безопасности информационных систем, а также подходы к анализу информационной инфраструктуры организационных систем и решению задач обеспечения безопасности компьютерных систем.Для студентов по направлению подготовки 230400 – Информационные системы и технологии (квалификация «бакалавр»).


UNIX — универсальная среда программирования

В книге американских авторов — разработчиков операционной системы UNIX — блестяще решена проблема автоматизации деятельности программиста, системной поддержки его творчества, выходящей за рамки языков программирования. Профессионалам открыт богатый "встроенный" арсенал системы UNIX. Многочисленными примерами иллюстрировано использование языка управления заданиями shell.Для программистов-пользователей операционной системы UNIX.


QNX/UNIX: Анатомия параллелизма

Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса.


Виртуальные  машины: несколько компьютеров в  одном

Применение виртуальных машин дает различным категориям пользователей — от начинающих до IT-специалистов — множество преимуществ. Это и повышенная безопасность работы, и простота развертывания новых платформ, и снижение стоимости владения. И потому не случайно сегодня виртуальные машины переживают второе рождение.В книге рассмотрены три наиболее популярных на сегодняшний день инструмента, предназначенных для создания виртуальных машин и управления ими: Virtual PC 2004 компании Microsoft, VMware Workstation от компании VMware и относительно «свежий» продукт — Parallels Workstation, созданный в компании Parallels.


Недокументированные и малоизвестные возможности Windows XP

Книга содержит подробные сведения о таких недокументированных или малоизвестных возможностях Windows XP, как принципы работы с программами rundll32.exe и regsvr32.exe, написание скриптов сервера сценариев Windows и создание INF-файлов. В ней приведено описание оснасток, изложены принципы работы с консолью управления mmc.exe и параметрами реестра, которые изменяются с ее помощью. Кроме того, рассмотрено большое количество средств, позволяющих выполнить тонкую настройку Windows XP.Эта книга предназначена для опытных пользователей и администраторов, которым интересно узнать о нестандартных возможностях Windows.