Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - [4]
Глубокое обучение (deep learning) – вид машинного обучения, в котором используются глубокие (или многоуровневые) искусственные нейронные сети (artificial neural networks), то есть программное обеспечение, имитирующее работу нейронов мозга. Глубокое обучение послужило основной движущей силой развития ИИ.
Есть и другие термины, которые, скорее всего, новичкам покажутся сложными. Без их глубокого понимания вполне можно обойтись, но краткое пояснение лишним не будет.
Метод обратного распространения ошибки (backpropagation) – алгоритм, используемый в системах глубокого обучения. Информация, поступающая в нейронную сеть, распространяется обратно через слои нейронов, вызывая у некоторых из них изменение настроек – весов (см. ниже «Обучение с учителем»). Так постепенно сеть находит правильный ответ. В 1986 г. Джеффри Хинтон стал соавтором первой полноценной статьи на эту тему, о чем более подробно вы узнаете из интервью с ним.
Еще более непонятный термин – градиентный спуск (gradient descent) – относится к математической технике, которую алгоритм обратного распространения использует для уменьшения ошибки в процессе обучения сети.
Встречаются в книге и термины, относящиеся к типам или конфигурациям нейронных сетей: рекуррентные (recurrent) и сверточные (convolutional) сети, а также машины Больцмана (Boltzmann machines). Различия обычно сводятся к способам связи нейронов. Детальное рассмотрение этих понятий выходит за рамки книги. Тем не менее я попросил объяснить их Яна Лекуна – изобретателя сверточной архитектуры, которая широко используется в распознавании объектов на изображениях.
Термин байесовский (bayesian) можно перевести как «вероятностный». Он встречается в таких сочетаниях, как «байесовские методы машинного обучения» или «байесовские сети». Они относятся к алгоритмам, которые используют вероятностные зависимости. Термин назван в честь священника Томаса Байеса (1701–1761), который сформулировал способ обновления вероятности события после возникновения другого, статистически взаимозависимого с ним. Байесовские методы очень популярны как среди специалистов по теории вычислительных машин и систем, так и среди ученых, моделирующих человеческое познание. Больше всего по этой теме рассказал Джуда Перл.
Способы обучения ИИ-систем
Существуют разные типы машинного обучения. Решающую роль в развитии искусственного интеллекта играют инновации, то есть новые способы обучения систем ИИ.
При обучении с учителем (supervised learning) алгоритму передаются структурированные, классифицированные и снабженные метками данные. Например, чтобы научить систему глубокого обучения распознавать на снимках собак, ей нужно предоставить много тысяч (или даже миллионов) изображений этого животного с меткой «собака». Кроме того, потребуется огромное количество изображений без собаки с меткой «нет собаки». После обучения можно показывать системе новые фотографии, и она будет определять наличие на них собаки на уровне, превосходящем возможности обычного человека.
Обучение с учителем – наиболее распространенный метод, применяемый в современных системах ИИ. На его долю приходится около 95 % практических приложений. Именно оно послужило основой машинного перевода (после обучения на миллионах предварительно переведенных документов) и ИИ-систем диагностики (после обучения на снимках с пометками «рак» и «нет рака»). К сожалению, для такого обучения требуются огромные объемы маркированных данных. Именно поэтому лидирующее положение в технологии глубокого обучения занимают такие компании, как Google, Amazon и Facebook.
Обучение с подкреплением (reinforcement learning), по сути, представляет собой обучение на практике или методом проб и ошибок. Система учится не на правильных размеченных данных, а самостоятельно ищет решение, получая подкрепление в случае успеха. Это напоминает дрессировку животных, которым в случае правильных действий дается кусочек вкусной еды. Именно обучение с подкреплением применялось для построения систем ИИ, играющих в игры. Из интервью с Демисом Хассабисом вы узнаете, что компания DeepMind использовала этот тип обучения для разработки компьютерной системы AlphaGo.
Проблема обучения по этому алгоритму заключается в необходимости огромного количества тренировочных попыток. Поэтому он применяется в основном для игр или для задач, которые можно воспроизводить на компьютере с высокой скоростью. Обучение с подкреплением можно использовать при разработке беспилотных автомобилей, но не для их эксплуатации на реальных дорогах. Виртуальные машины обучаются в искусственной среде, а после завершения обучения программное обеспечение устанавливается на реальные автомобили.
Обучение без учителя (unsupervised learning) обеспечивает непосредственное обучение на поступающих из окружающей среды неструктурированных данных. Именно так учатся люди. Например, дети учатся говорить, слушая речь родителей. Разумеется, человек использует и другие типы обучения, но самым характерным для него остается наблюдение и неконтролируемое взаимодействие с окружающей средой.
Эта книга о квантах – людях, управляющих рынками с помощью сложнейших математических моделей. Такой захватывающей истории о фондовом рынке вы еще никогда не читали.У вас в руках – шедевр журналистики, не просто поиск причины экономического кризиса, но и захватывающая история амбиций и гордыни, и предупреждение о будущем Уолл-стрит и всей мировой экономики.На русском языке публикуется впервые.
Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого.
Речь в книге идет о том, что уровень развития страны и особенности жизни в ней определяются законами государства и его экономической и социальной политикой. На примере Финляндии показано, как за семь столетий жизни при разных законах возникла огромная разница между Россией и Финляндией. И это совершенно закономерно. Приведены примеры различий. Дана полезная информация о Финляндии. Есть информация для туристов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
"Литературная газета" общественно-политический еженедельник Главный редактор "Литературной газеты" Поляков Юрий Михайлович http://www.lgz.ru/.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.