Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - [30]

Шрифт
Интервал

Затем идет нелинейный слой, где каждый нейрон включается или выключается, в зависимости от того, выше или ниже заданного порога оказалась вычисляемая слоем свертки взвешенная сумма. Наконец, третий слой выполняет операцию субдискретизации, чтобы убедиться, что небольшое смещение или деформация входного изображения не сильно меняет результат на выходе. Это обеспечивает независимость от деформаций входного изображения.

По сути, сверточная сеть – это стек, организованный из слоев свертки, нелинейности и субдискретизации. Когда они сложены, появляются нейроны, распознающие объекты. Например, нейрон, который включается при нахождении лошади на изображении, другой нейрон – для автомобилей, третий – для людей и так далее, для всех нужных вам категорий.

При этом то, что делает нейронная сеть, определяется силой связей между нейронами, то есть весами. И эти веса не запрограммированы, а являются результатом обучения.

Сети показывается изображение лошади, и, если она не отвечает «лошадь», ее информируют, что это неправильно, и подсказывают правильный ответ. После этого с помощью алгоритма обратного распространения ошибки сеть корректирует веса всех соединений, чтобы в следующий раз при демонстрации такого же изображения результат был ближе к нужному. При этом приходится демонстрировать ей тысячи изображений.

М. Ф.: Это обучение с учителем? Как я понимаю, сейчас это доминирующий подход.

Я. Л.: Именно так. Почти все современные приложения глубокого обучения используют обучение с учителем. Магия в том, что обученная сеть по большей части дает правильные ответы даже для изображений, которых ей раньше не показывали. Но нуждается в огромном количестве примеров.

М. Ф.: А чего можно ожидать в будущем? Можно ли будет учить машину как ребенка, которому достаточно один раз показать кошку и назвать ее?

Я. Л.: На самом деле вы не совсем правы. Первые тренировки сверточной сети действительно проходят на миллионах изображений различных категорий. А потом, если нужно добавить новую категорию, например научить компьютер распознавать кошек, для этого достаточно нескольких образцов. Ведь сеть уже обучена распознавать объекты практически любого типа. Дополнения к обучению касаются пары верхних слоев.

М. Ф.: Это уже похоже на то, как учатся дети.

Я. Л.: Нет, к сожалению, это совсем не похоже. Дети получают большую часть информации до того, как кто-то скажет им: «Это кошка». В первые несколько месяцев жизни дети учатся, не имея понятия о языке. Они узнают устройство мира, просто наблюдая за миром и немного взаимодействуя с ним. Такой способ накопления знаний машинам недоступен. Как это назвать, непонятно. Некоторые используют провокационный термин «обучение без учителя». Иногда это называют предвосхищающим, или индуктивным, обучением. Я называю это самообучением. При обучении этого типа не идет речи о подготовке к выполнению какой-то задачи, это просто наблюдение за миром и тем, как он функционирует.

М. Ф.: А обучение с подкреплением в эту категорию попадает?

Я. Л.: Нет, это совсем другая категория. По сути, выделяют три основные категории: обучение с подкреплением, обучение с учителем и самообучение.

Обучение с подкреплением происходит методом проб и ошибок и хорошо работает для игр, где можно делать сколько угодно попыток. Хорошая производительность AlphaGo была достигнута после того, как машина сыграла больше игр, чем все человечество за последние три тысячи лет. К задачам из реального мира такой подход нецелесообразен.

Человек может научиться водить автомобиль за 15 часов тренировок, ни во что не врезавшись. Если использовать существующие методы обучения с подкреплением, машине, чтобы научиться ездить без водителя, придется 10 тысяч раз упасть с обрыва, прежде чем она поймет, как этого избежать.

М. Ф.: Мне кажется, что это аргумент в пользу моделирования.

Я. Л.: Скорее, это подтверждение того, что тип обучения, которым пользуются люди, сильно отличается от обучения с подкреплением. Это похоже на обучение с подкреплением на базе моделей. Ведь человек, садясь за руль впервые, имеет модель мира и может предсказывать последствия своих действий. Как заставить машину самостоятельно изучать прогностические модели – это главная нерешенная проблема.

М. Ф.: Именно с этим связана ваша работа в Facebook?

Я. Л.: Да, это одна из вещей, над которыми мы работаем. Еще мы обучаем машину наблюдать за разными источниками данных. Строим модель мира, надеясь на отражение в ней здравого смысла, чтобы потом использовать ее как прогностическую.

М. Ф.: Некоторые считают, что одного глубокого обучения недостаточно, и в сетях изначально должна быть структура, отвечающая за интеллект. А вы, похоже, убеждены, что интеллект может органически появиться из относительно универсальных нейронных сетей.

Я. Л.: Вы преувеличиваете. С необходимостью структуры согласны все, вопрос в том, как она должна выглядеть. А говоря о людях, которые считают, что должны быть структуры, обеспечивающие логическое мышление и способность к аргументации, вы, вероятно, имеете в виду Гари Маркуса и, возможно, Орена Этциони. С Гари мы спорили на эту тему сегодня утром. Его мнение не очень хорошо воспринимается в сообществе, потому что, не сделав ни малейшего вклада в глубокое обучение, он критически писал о нем. Орен работал в этой сфере некоторое время и при этом высказывается значительно мягче.


Еще от автора Мартин Форд
Технологии, которые изменят мир

Эта книга о квантах – людях, управляющих рынками с помощью сложнейших математических моделей. Такой захватывающей истории о фондовом рынке вы еще никогда не читали.У вас в руках – шедевр журналистики, не просто поиск причины экономического кризиса, но и захватывающая история амбиций и гордыни, и предупреждение о будущем Уолл-стрит и всей мировой экономики.На русском языке публикуется впервые.


Роботы наступают

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого.


Рекомендуем почитать
Твин Пикс. Беседы создателя сериала Марка Фроста с главными героями, записанные журналистом Брэдом Дьюксом

К выходу самой громкой сериальной премьеры этого года! Спустя 25 лет Твин Пикс раскрывает секреты: история создания сериала из первых уст, эксклюзивные кадры, интервью с Дэвидом Линчем и исполнителями главных ролей сериала.Кто же все-таки убил Лору Палмер? Знали ли сами актеры ответ на этот вопрос? Что означает белая лошадь? Кто такой карлик? И что же все-таки в красной комнате?Эта книга – ключ от комнаты. Не красной, а той, где все герои сериала сидят и беседуют о самом главном. И вот на ваших глазах начинает формироваться история Твин Пикс.


Почему в России не Финляндия?

Речь в книге идет о том, что уровень развития страны и особенности жизни в ней определяются законами государства и его экономической и социальной политикой. На примере Финляндии показано, как за семь столетий жизни при разных законах возникла огромная разница между Россией и Финляндией. И это совершенно закономерно. Приведены примеры различий. Дана полезная информация о Финляндии. Есть информация для туристов.


Русская жизнь-цитаты-Июнь-2017

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Газета Завтра 1228 (24 2017)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О своем романе «Бремя страстей человеческих»

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Газета Завтра 1225 (21 2017)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.