Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - [18]
Мартин Форд: Широкую известность вам принесла работа над методом обратного распространения ошибки. Расскажите, пожалуйста, что это за метод?
Джеффри Хинтон: Проще всего объяснить от обратного. Считается, что существует четкий алгоритм обучения нейронных сетей. Есть сеть, состоящая из слоев нейронов, снизу – вход в нее, сверху – выход. Все связи между нейронами имеют свой вес. Каждый нейрон смотрит на нейроны нижнего слоя и умножает их активность на вес связей, затем складывает все это и выдает результат. Регулируя вес связей, можно заставить сеть выполнять нужные вам операции, например находить кота на изображении и добавлять соответствующую метку.
Но как с помощью регулировки весов добиться от сети нужного результата? Существует простой и эффективный, но невероятно медленный алгоритм. Всем связям присваиваются случайные веса, сети демонстрируются примеры, и вы смотрите, что получается. Затем один из этих весов немного меняется, и демонстрируется другой набор примеров. Если результат работы сети стал лучше, внесенные изменения сохраняются. В противном случае вес возвращается к исходному значению или меняется в противоположном направлении. Затем эта операция проделывается с весом следующей связи и т. д.
В результате работа сети оценивается для каждого веса, причем на ряде примеров. Каждый вес должен обновляться несколько раз. Это медленно, но результат гарантирован.
Метод обратного распространения ошибки, по сути, позволяет получить такой же результат намного быстрее. Скорость его работы зависит от количества связей. Для сети с миллиардом связей метод обратного распространения сработает в миллиард раз быстрее, чем описанный выше алгоритм.
Прямой алгоритм имитирует процесс эволюции, ведь то, как заложенная в генах информация реализуется в конкретном индивиде, зависит от среды, в которой он находится. По генотипу невозможно точно предсказать, как будет выглядеть фенотип или насколько он будет успешным, потому что на это влияет множество внешних факторов.
Поскольку корректность результатов определяется только весами, которые нам известны, процесс прохождения данных можно контролировать с помощью метода обратного распространения. Его суть состоит в передаче сигналов ошибки от выхода к входу. В процессе их прохождения вычисляется, как следует поменять вес каждой связи, чтобы улучшить выводимый результат.
Вместо того чтобы измерять эффект от внесенных изменений, метод обратного распространения ошибки вычисляет, что получится после внесения изменений, причем для всех весов одновременно. Настройка весов выполняется быстро: сети предоставляется сразу несколько примеров, рассчитывается разность между требуемым выходом и результатами сети, после чего эта информация передается в обратном направлении. Процесс выполняется несколько раз, но все равно работает быстрее эволюционного алгоритма.
М. Ф.: Метод обратного распространения ошибки изобрел Дэвид Румельхарт, а вы развили его?
Дж. Х.: Версии этого метода предлагались еще до Румельхарта. В основном к этой идее приходили независимо друг от друга, поэтому меня всегда смущает, когда в СМИ меня называют автором этого метода. Я главным образом продемонстрировал, как использовать этот метод для изучения распределенных представлений.
В 1981 г. после получения докторской степени я начал работать в городе Сан-Диего, штат Калифорния. Идею метода обратного распространения ошибки предложил Дэвид Румельхарт, а мы с Рональдом Уильямсом помогли в поиске правильных формулировок. Ничего впечатляющего с этим методом мы тогда не сделали. Не было и никаких публикаций. После этого я отправился в Университет Карнеги – Меллона, где работал над машиной Больцмана. Эта идея казалась более интересной, хотя она и не сработала. В 1984 г. я вернулся в Сан-Диего, чтобы сравнить метод обратного распространения с машиной Больцмана. Оказалось, что он дает более убедительные результаты, поэтому я снова начал общаться с Дэвидом Румельхартом.
Но по-настоящему меня восхитила возможность на примере формирования генеалогического древа применить метод обратного распространения к изучению распределенных представлений. На вход подавалось два слова, а возвращалось третье, связанное с обоими. То есть нейросеть как бы улавливала значения слов.
Например, если мать Шарлотты зовут Виктория, то корректным выводом для слов Шарлотта и мать было Виктория. А для слов Шарлотта и отец корректным был ответ Джеймс. Если взять генеалогическое древо, в котором нет разводов, то стандартный ИИ, используя свои знания о семейных отношениях, может сделать вывод, что Виктория – супруга Джеймса. К такому же выводу может прийти нейронная сеть, причем не пользуясь логическими правилами, а просто изучив множество признаков каждого человека. В этом случае Виктория и Шарлотта – это наборы отдельных признаков. Результат взаимодействия двух векторов дает признаки корректного ответа. Потрясает, как сеть изучает векторы признаков и распределенные представления для разных слов.
В 1986 г. мы описали это в статье для журнала Nature. Тема сильно заинтересовала одного из рецензентов. Как психолог, он понимал, что алгоритм, обучающий представлению о вещах, станет огромным прорывом. Так что мой вклад заключается не в открытии алгоритма обратного распространения, а в том, что я смог показать, как этот метод может применяться для обучения распределенным представлениям. Именно это оказалось интересно психологам и, в конечном итоге, людям, которые занимались вопросами ИИ.
Эта книга о квантах – людях, управляющих рынками с помощью сложнейших математических моделей. Такой захватывающей истории о фондовом рынке вы еще никогда не читали.У вас в руках – шедевр журналистики, не просто поиск причины экономического кризиса, но и захватывающая история амбиций и гордыни, и предупреждение о будущем Уолл-стрит и всей мировой экономики.На русском языке публикуется впервые.
Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого.
К выходу самой громкой сериальной премьеры этого года! Спустя 25 лет Твин Пикс раскрывает секреты: история создания сериала из первых уст, эксклюзивные кадры, интервью с Дэвидом Линчем и исполнителями главных ролей сериала.Кто же все-таки убил Лору Палмер? Знали ли сами актеры ответ на этот вопрос? Что означает белая лошадь? Кто такой карлик? И что же все-таки в красной комнате?Эта книга – ключ от комнаты. Не красной, а той, где все герои сериала сидят и беседуют о самом главном. И вот на ваших глазах начинает формироваться история Твин Пикс.
Речь в книге идет о том, что уровень развития страны и особенности жизни в ней определяются законами государства и его экономической и социальной политикой. На примере Финляндии показано, как за семь столетий жизни при разных законах возникла огромная разница между Россией и Финляндией. И это совершенно закономерно. Приведены примеры различий. Дана полезная информация о Финляндии. Есть информация для туристов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.