Апология математики, или О математике как части духовной культуры - [17]
Только что изложенное свойство бесконечных совокупностей не столь трудно для понимания, как это может показаться. И сейчас мы попытаемся его объяснить. Сама логическая конструкция проста, изящна и поучительна. Мы надеемся, что читатель согласится включить её в свой интеллектуальный багаж, причём в качестве носимой с собой ручной клади, а не тяжеловесного предмета, сдаваемого в багажное отделение.
Для начала перестанем избегать термина множество, как это мы делали до сих пор, стыдливо заменяя его синонимом «совокупность». Множество состоит из элементов, которых не обязательно много. (Это в русском языке слова «множество» и «много» однокоренные, а вот английское «set» и французское «ensemble» не несут на себе вводящего в заблуждение оттенка множественности.) Возможны множества, состоящие из одного только элемента, и даже пустое множество, вовсе не имеющее элементов. Зачем же рассматривать такие патологические образования, как пустое множество, спросит читатель. И мы ему ответим: это удобно. Удобно иметь право говорить, например, о множестве слонов в зоопарке города N, не зная заранее, есть ли в этом зоопарке хотя бы один слон. Какое множество ни взять, среди его частей присутствует и пустое множество: так, среди частей множества всех слонов земного шара присутствует не только множество слонов московского зоопарка, но и множество слонов любого зоопарка, слонов не имеющего. Во избежание недоразумений заметим, что пустое множество одно: пустое множество слонов и пустое множество мух представляют собою одно и то же множество. (Совершенно так же, как стакан газированной воды без вишневого сиропа не отличается от стакана газированной воды без апельсинового сиропа; сравнение понятно для тех читателей старших поколений, которые ещё помнят торговлю газировкой на улицах советских городов.)
Учение о сравнении количеств элементов в любых, а не только конечных, множествах целиком принадлежит великому немецкому математику и философу Георгу Кантору (1843–1918). Назвав Кантора немцем, мы всего лишь следовали укоренившейся традиции. Не вполне ясно, как его следует называть. Его отец родился в Дании, мать — в России. Сам он также родился в России, а именно в Санкт-Петербурге; в этом городе он провел первые одиннадцать лет своей жизни, о которых вспоминал с ностальгией. Вот, скажем, Пьера Ферма, о котором говорилось выше, в главе 2, можно было, не испытывая сомнений, назвать французом: он всегда жил во Франции, ей служил и говорил по-французски; трудно представить, чтобы Ферма ощущал себя кем-то иным, а не французом. Кем ощущал себя Кантор — загадка. Его биографы указывают, что хотя свою взрослую жизнь он и прожил в Германии, уютно ему там не было.
Выдающийся российский математик Павел Сергеевич Александров (1896–1982) писал: «Думаю, что во второй половине XIX века не существовало математика, оказавшего большее влияние на развитие математической науки, чем создатель абстрактной теории множеств Георг Кантор».
Учение о бесконечном оказалось настолько трудным, что привело его автора к тяжёлой нервной болезни. В 1884 году у Кантора начались приступы депрессии, а с 1897 года он уже не публиковал научных работ. С 1899 года Кантор становится пациентом нервных санаториев, а потом и клиник, проводя в них всё больше и больше времени. В одной из таких клиник он и скончался. Любезному читателю это не грозит, поскольку мы ограничимся началами.
Построения Кантора основаны на чрезвычайно простой мысли (которая, как и всякая гениальная мысль, после своего осознания кажется очевидной): понятие количества является вторичным по отношению к понятию равенства количеств. Не должно смущаться тем, что в выражении «равенство количеств» слово «количество» уже присутствует: нас должна интересовать не лингвистическая этимология терминов, а логическая генеалогия понятий. Для установления равноколичественности двух множеств вовсе не нужно пересчитывать их элементы, даже вообще можно не уметь считать. Для примера представим себе двух первобытных людей, один из которых располагает стадом коз, а другой — стадом овец. Они хотят обменяться своими стадами, но при условии, что стада равноколичественны. Счёта они не знают. Но это им и не нужно. Нужно просто связать попарно овец и коз, так чтобы каждая коза была связана ровно с одной овцой, а каждая овца — ровно с одной козой. Успех процедуры и означает равенство количеств.
Пример из первобытной жизни приводит нас к важнейшему понятию эквивалентности множеств. Говорят, что два множества эквивалентны, если можно так сопоставить друг с другом элементы первого множества и элементы второго множества, что каждый элемент первого множества окажется сопоставленным ровно с одним элементом второго множества и каждый элемент второго множества окажется сопоставленным ровно с одним элементом первого множества. Наши скотоводы как раз и установили эквивалентность своих стад. А синьор Сальвиати установил эквивалентность множества всех квадратов и множества всех чисел; эту эквивалентность можно наглядно показать посредством следующей таблицы
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.