Аналогия - [14]
О преимуществе вируса перед человеком. Два обстоятельства, на мой взгляд, привели к тому, что значительная часть исследователей по сие время теряет время в пустых вычислениях и бессмысленных спорах.
Первое — то, что мы привыкли считать: ген — это та последовательность нуклеотидов в ДНК, которая кодирует белок. Отсюда стандартное изречение: один ген — один белок.
Второе — то, что по чисто техническим причинам изучение генетических программ и их перекодировки началось с простейших (бактерии) и сверхпростейших, упрощенных организмов (вирусы). А проще — с кишечной палочки и паразитирующих в ней бактериофагов и вируса табачной мозаики.
Исследование этих объектов вроде бы подтверждало прежнюю истину («один ген — один белок»). Правда, нашлись и исключения. Некоторые белки складывались из нескольких полипептидных цепей и кодировались, соответственно, несколькими генами. Другие гены кодировали не белки, а нужные для работы клетки нуклеиновые кислоты — РНК рибосомные и транспортные. Но это все было мелочью, и до сих пор многие полагают, что гены — это та ДНК, которая кодирует белки, а если она их не кодирует, то это не гены. А что же это тогда? Какую функцию выполняет ДНК, не находящая отражения в аминокислотных последовательностях белков?
Пока изучали простейшие объекты, от этой ДНК можно было отмахнуться. Геномы бактерий и фагов построены очень экономно. Там действительно почти каждая нуклеотидная последовательность находит отражение в аминокислотной последовательности белка. Более того, экономия генетического материала у вирусов доходит до того, что один ген может кодировать два, а то и три белка. Как это может получиться? Возьмем для примера кусочек последовательности информационной РНК, кодирующий всего три аминокислотных остатка:
Это соответствует последовательности в белке:
То есть, серин-треонин-аспарагиновая кислота. Тот же ген может быть прочитан со сдвигом на один нуклеотид вправо. Тогда получится совсем другой белок, в нашем примере эта часть будет означать про-арг-иле (пролин-аргинин-изолейцин). Код вирусов перекрывается, одна последовательность нуклеотидов читается по-разному в зависимости от начала считывания. У некоторых фагов отмечено даже тройное перекрытие. Гены высших организмов так экономно не построены, достоверных данных о перекрытии в них нет. Впрочем, геномы ретровирусов, к которым относится печально известный вирус СПИДа, способны к перекрыванию, а во многих геномах высших организмов имеются очень похожие на них последовательности.
Но это все-таки исключение из правила. В целом уже первые исследования показали, что наши геномы построены, по крайней мере на первый взгляд, чрезвычайно неэкономично. Как говорят, у них низкая плотность кодирования генетической информации. Образно выражаясь, геном вируса — речь спешащего спартанца, геном человека — речь заикающегося зануды.
Доказать это очень просто. Сколько белков может синтезировать организм человека? Около 50 тыс. (конечно, в самом грубом приближении). Нуклеотидов в геноме человека 3,2 млрд. Зная молекулярную массу «среднего» белка, нетрудно прикинуть, из скольких аминокислотных остатков он состоит, сколькими кодонами кодируется. Помножив на 50 тыс., мы придем к выводу, что не меньше 95% ДНК в геноме лишние. Более того, теперь мы уже точно знаем, что большая часть ДНК в наших геномах никаких белков не кодирует, с нее не считывается в обычных условиях информационная РНК, а если и считывается, то не находит отражения в аминокислотных последовательностях. Что же делает эта ДНК, какова ее функция?
Самый неожиданный ответ на этот вопрос рискнули дать одновременно и независимо друг от друга У. Ф. Дулиттл со своей сотрудницей К. Сапиенса и классик молекулярной биологии Ф. Крик с Л. Орджелом в 1980 году.
Эпоха бранных слов. Какую же гипотезу они предложили? Теперь за ней устоялось название «гипотезы эгоистичной (selfish) ДНК». Суть ее заключается в том, что или вся ДНК, не перекодирующаяся в белок, или ее значительная часть не имеет смысла. Изменения в ней не затрагивают строение организма (фенетические признаки). Она размножается при каждом делении клеток, не принося организму пользы, но и не причиняя существенного вреда, существуя сама для себя. В геноме это нахлебник или паразит, умеющий довольствоваться малым.
Откуда же среди генов берутся такие эгоисты? Авторы этой концепции исходят из простых предпосылок. Уже давно известны способы, с помощью которых нуклеотидная последовательность, ранее существовавшая в единичном экземпляре, может размножиться, образовав десятки, сотни, тысячи и миллионы копий. Этот процесс назвали амплификацией (размножением).
Существует и обратный процесс — выпадение из генома последовательностей, в том числе и лишних, амплифицированных. Его назвали делецией. Нетрудно сообразить, что, если скорость амплификации последовательностей хоть немного превысит скорость делеции, геном быстро переполнится копиями генов, которые для существования организма попросту не нужны. Разумеется, это не может длиться бесконечно. Как только геном клетки переполнится паразитами, начнет действовать отбор. Медленно растущие носители паразитарных последовательностей будут им отсеиваться. Но сторонники эгоистичной ДНК полагают, что энергетические расходы клетки на содержание ненужной ДНК не столь значительны.
Современная биология – это совокупность научных дисциплин, с разных сторон и на разных уровнях изучающих все многообразие живой материи. Можно ли, опираясь на сумму накопленных знаний, построить некую систему теоретических положений, необходимых для понимания специфических отличий живого от неживого? Можно, считает автор, и в доступной форме излагает основные принципы, которые играют в биологии такую же роль, какую в геометрии – аксиомы.Для широкого круга читателей.
Учение Дарвина стоит на трех «китах» — трех основных факторах эволюции: наследственности, изменчивости и отборе. Выдержали ли эти «киты» натиск новых фактов, добытых науками нашего века — генетикой, молекулярной биологией, теорией информации? Кто прав — Дарвин или учитель Александра Македонского Аристотель? Есть ли прогресс в природе? Когда возник естественный отбор — вместе с жизнью или до нее?.. Обо всем этом и расскажет автор в данной книге, посвященной развитию учения об эволюции в XX столетии, борьбе материализма и идеализма в эволюционной теории.
История ДНК – это сага, полная блестящих научных открытий, невероятных случайностей, грубых ошибок. Она начинается с обнаружения нуклеина в конце 1860-х годов и заканчивается публикацией книги Джеймса Уотсона «Двойная спираль» в 1968 году. За эти 100 лет появились Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны, – и каждое из этих событий повлияло на открытие ДНК. Джеймс Уотсон и Фрэнсис Крик разгадали загадку двойной спирали, но Гарет Уильямс показывает, что их вклад был последним кусочком гигантского пазла, который собирали несколько десятилетий многие забытые историей ученые.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
О чем рассказал бы вам ветеринарный врач, если бы вы оказались с ним в неформальной обстановке за рюмочкой крепкого не чая? Если вы восхищаетесь необыкновенными рассказами и вкусным ироничным слогом Джеральда Даррелла, обожаете невыдуманные истории из жизни людей и животных, хотите заглянуть за кулисы одной из самых непростых и важных профессий – ветеринарного врача, – эта книга точно для вас! Веселые и грустные рассказы Алексея Анатольевича Калиновского о людях, с которыми ему довелось встречаться в жизни, о животных, которых ему посчастливилось лечить, и о невероятных ситуациях, которые случались в его ветеринарной практике, захватывают с первых строк и погружают в атмосферу доверительной беседы со старым другом! В формате PDF A4 сохранен издательский макет.
Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.