Алгоритмы для жизни: Простые способы принимать верные решения - [66]
…и правила определения их вероятности
Вы имели в виду, что «это может продолжаться вечно» в хорошем смысле?
Бен Лернер
Изучая действие принципа Коперника, мы обнаружили: если мы используем правило Байеса, применяя неинформативное априорное предположение, то правило всегда предсказывает, что общая продолжительность существования объекта будет ровно в два раза больше его текущего возраста. По сути, неинформативное априорное предположение, со всеми его невероятно изменчивыми возможными масштабами, – как Берлинская стена, которая могла бы простоять еще несколько месяцев или несколько веков. Это и есть экспоненциальное распределение. И для каждого экспоненциального распределения правило Байеса утверждает, что самой подходящей стратегией для определения вероятности станет правило умножения вероятностей: просто умножим количество, имеющееся по состоянию на сегодняшний день, на некоторый постоянный фактор. В случае с неинформативным априорным предположением таким постоянным фактором является число 2, отсюда и предсказание по Копернику; в других случаях экспоненциального распределения множитель будет зависеть от конкретного распределения, с которым вы работаете. В случае кассовых сборов, например, множитель равен примерно 1,4. Таким образом, если вы услышите, что на данный момент фильм собрал $6 млн, то можно предположить, что в общей сложности он соберет около $8,4 млн. Если фильм уже собрал $90 млн, то наверняка наивысшей точкой станут $126 млн. Правило умножения является прямым следствием того факта, что экспоненциальные распределения не отражают естественных масштабов того явления, которое они описывают. Таким образом, единственное, что дает нам ощущение масштаба для нашего предсказания, – та самая единственная точка данных, которая у нас есть (например, тот факт, что Берлинская стена существовала уже восемь лет до нашего появления). Чем больше значение этой единственной точки данных, тем больше масштаб явления, с которым мы имеем дело, и наоборот. Возможно, фильм, собравший $6 млн за первый час после выхода, на самом деле блокбастер, но гораздо более вероятно, что он так и не соберет более $9 млн.
Когда мы применяем правило Байеса с условием нормального распределения в качестве априорного предположения, у нас появляется совсем другая схема. Вместо правила умножения вероятностей мы получаем правило расчета средней вероятности: используйте естественный средний показатель распределения в качестве единственной определенной шкалы. Например, если некто моложе возраста средней продолжительности жизни, то просто предположите средний показатель; по мере того как человек достигает возраста, близкого к показателю, и затем превышает его, сделайте предположение, что человек проживет еще несколько лет. Следуя этому правилу, вы можете сделать разумные предположения для 90-летнего человека и для 6-летнего ребенка, получив при этом 94 года и 77 лет соответственно (6-летний ребенок получает небольшое преимущество при средней продолжительности жизни 76 лет, поскольку он пережил грудной возраст и мы знаем, что он не в самом конце распределения).
Продолжительность фильма, как продолжительность человеческой жизни, тоже попадает под нормальное распределение: большинство фильмов длятся примерно 100 минут, немногочисленные исключения располагаются по ту или иную сторону от среднего показателя. Но не все виды человеческой деятельности так просты и послушны. Поэт Дин Янг однажды заметил, что всегда, когда он слушает стихотворение или поэму, состоящую из нескольких пронумерованных частей, у него сердце екает, когда чтец объявляет начало четвертой части: если в поэме более трех частей, то дальнейшее непредсказуемо. Янг, в сущности, беспокоится «по Байесу». Анализ стихотворений показывает, что, в отличие от продолжительности фильмов, длина стихотворения ближе к экспоненциальному распределению, нежели к нормальному: большинство стихотворений коротки, но случаются и целые эпические поэмы. Когда дело доходит до поэзии, удостоверьтесь, что вам удобно сидеть. Подпадающее под нормальное распределение стихотворение, которое уже немного затянулось, вскоре подойдет к концу; но более объемная вещь из экспоненциального распределения продлится дольше, чем вы можете ожидать. Между этими крайностями на самом деле существует третья категория вещей: которые непременно закончатся, поскольку они начались и продолжаются некоторое время. Иногда вещи просто… неизменны.
Датский математик Агнер Краруп Эрланг, изучавший такое явление, зафиксировал разброс интервалов между зависимыми событиями, разработав функцию, которая получила его имя – распределение Эрланга. Форма этой кривой отличается и от нормального, и от экспоненциального распределения: ее контур похож на крыло; ее линия плавно поднимается к максимальной точке, а конец опускается более резко, чем у экспонентной кривой, и более медленно по сравнению с кривой нормального распределения. Сам Эрланг, работая в начале ХХ века в Копенгагенской телефонной компании, использовал эту схему, чтобы определить количество времени между звонками в телефонной сети. С тех пор распределение Эрланга также применялось градостроителями и архитекторами для создания модели автомобильного и пешеходного движения и инженерами компьютерных сетей при разработке интернет-инфраструктуры. В обычном мире тоже существует ряд областей, в которых события абсолютно не зависят друг от друга, и интервалы между ними можно выразить с помощью кривой Эрланга. Это, в частности, радиоактивный распад. Модель Эрланга с точностью подскажет, когда в следующий раз мы услышим тиканье счетчика Гейгера. Распределения Эрланга отлично работают и для амбициозных проектов человека. Например, они годятся, чтобы подсчитать, как долго политики задержатся в нижней палате Конгресса.
В монографии представлен аналитический обзор современной литературы, отражающий основные научные подходы к изучению родственников больных с аддиктивными расстройствами. В работе описываются особенности личностного и семейного функционирования различных категорий родственников больных, страдающих героиновой наркоманией, в сопоставлении с показателями их сверстников из нормативной выборки. Нормативная группа включала практически здоровых лиц, не имеющих выраженных нарушений социальной адаптации. Среди членов семьи нормативной группы отсутствовали лица, страдающие наркотической зависимостью, выраженными нервно-психическими или тяжелыми хроническими соматическими заболеваниями. Описан характер семейной и личностной дисфункциональности родственников наркозависимых, в частности, среди показателей семейного функционирования особое внимание уделено таким, как: нарушение семейного климата и уровня организации семьи, снижение показателей семейной социокультурной ориентации.
Успешность – это реальность или призрак? Ради неё многие люди готовы на всё! Но как её достичь? Использовать логику или довериться случаю? Эта книга поможет достичь подлинной успешности и счастья в жизни! Почему бы не начать её читать? Несомненно вы найдёте много полезного для своей жизни!
Соционическое знание дает конкретные рекомендации, как произвести впечатление и строить отношения с каждым из 16 типов мужчин. Соционика избавит вас от необходимости прибегать к методу ненаучного тыка в надежде, что хоть какое-нибудь из ваших достоинств случайно впечатлит и не напугает при этом вашего партнера.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«По моему мнению, Майкл Гриндер изложил нечто экстраординарное в этой книге. Он прекрасно представил некоторые репрезентативные паттерны, смоделированные в НЛП – технологии, и существенно усовершенствовал их для конкретного контекста образования. Читателю представлены точные описания техник активного и пассивного наблюдений, классификация стилей научения учеников и техники адаптации учителя к ученику. Результат – не только улучшение успеваемости, но и улучшение взаимоотношений с учениками. Поэтому я с удовольствием рекомендую всем, кто хочет самосовершенствоваться, овладеть паттернами, представленными в этой книге.
«Кокология» – модная японская игра, представляющая собой серию увлекательных психологических тестов, – входит сегодня в число популярнейших американских бестселлеров. «Кокология-2» предлагает читателям более 50 совершенно новых тестов, рассчитанных как на опытных кокологов, так и на новичков. Кокология – наука, занимающаяся изучением кокоро, что по-японски значит «ум» или «дух», – предлагает вам совершенно безобидные на первый взгляд вопросы вроде «Какая комната в вашем воображаемом доме самая чистая?», после чего выдает на основе полученных ответов описание вашего характера, ваших помыслов и предпочтений.