Алгоритм решения 10 проблемы Гильберта - [2]

Шрифт
Интервал

Для чисел кратным 4-ем существует еще один алгоритм. Его можно использовать для упрощенного нахождения пифагоровых троек.



Пример № 8





Получилась уже известная тройка.

Доказательство теоремы Ферма

Постановка вопроса о разрешимости диофантовых уравнений подразумевала также доказательство теоремы Ферма[5]. Почему же не может существовать целочисленные значения для уравнений вида



При



Собственно от формулы Пифагора это уравнение отличается только значением степени, поэтому формула Пифагора принадлежит к этим уравнениям.

А раз она принадлежит к данным уравнениям, то для нахождения решений можно применить универсальный алгоритм. Для этого нужно это произвольное уравнение перевести в степень 2



Упростим уравнение



Теперь можно применить одну из формул алгоритма



Для нахождения значений этого уравнения, кратностью можно пренебречь, так как в любом случае существует исходная тройка взаимно простых чисел. Поэтому применим формулу исходного алгоритма





По условиям алгоритма, должно получиться равенство



Предположим, что такое равенство возможно. Но коэффициент числа «b» меньше 1, так как сумма, которую представляет число «с», больше слагаемого, которое представляет число «b».



Из этого следует что



что соответствует утверждению Ферма о невозможности существования натуральных чисел, и не соответствует условиям алгоритма, это наглядно показывает ,что не существует целочисленных решений для уравнений вида



При



А так как в приведенных выше примерах доказано, что алгоритм является верным не только для натуральных, но и для всех рациональных чисел, то можно уверенно утверждать: не существует даже рациональных решений для уравнений этого вида.

Итак, подведем итог этого исследования.

1) Доказано, что существует универсальный алгоритм или, как указано в 10-й проблеме Гильберта, единый способ, при помощи которого возможно после конечного числа операций установить разрешимо или нет уравнение вида



в целых рациональных числах

2) Доказано, что при помощи универсального алгоритма решение в натуральных и рациональных числах возможно для этого уравнения при n=2

3) Доказано, что для уравнений



При



Решений в натуральных и рациональных числах не существует.

Сноски

[1] Ю. В. Матиясевич, Десятая проблема Гильберта – М., Наука, 1993

[2] Давид Гильберт (23.01.1862 – 14.02.1943) математик-универсал, внес значительный вклад в развитие многих областей математики.

[3] Диофант Александрийский древнегреческий математик, живший в 3-ем веке н.э.

[4] Пифагор Самосский ( 570-490г до н.э.) древнегреческий философ, математик.

[5] Пьер де Ферма (17.09.1601 – 12.01. 1665) французский математик-самоучка.


Рекомендуем почитать
Геометрическая рапсодия

Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.


Самые знаменитые головоломки мира

Сборник математических задач и увлекательных головоломок, принадлежащий перу одного из классиков этого жанра Сэма Лойда, несомненно доставит большое удовольствие всем любителям занимательной математики.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Математика. Утрата определенности.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.


Том 33. Разум, машины и математика. Искусственный интеллект и его задачи

Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.


Кентерберийские головоломки

Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.