Алгоритм решения 10 проблемы Гильберта - [2]

Шрифт
Интервал

Для чисел кратным 4-ем существует еще один алгоритм. Его можно использовать для упрощенного нахождения пифагоровых троек.



Пример № 8





Получилась уже известная тройка.

Доказательство теоремы Ферма

Постановка вопроса о разрешимости диофантовых уравнений подразумевала также доказательство теоремы Ферма[5]. Почему же не может существовать целочисленные значения для уравнений вида



При



Собственно от формулы Пифагора это уравнение отличается только значением степени, поэтому формула Пифагора принадлежит к этим уравнениям.

А раз она принадлежит к данным уравнениям, то для нахождения решений можно применить универсальный алгоритм. Для этого нужно это произвольное уравнение перевести в степень 2



Упростим уравнение



Теперь можно применить одну из формул алгоритма



Для нахождения значений этого уравнения, кратностью можно пренебречь, так как в любом случае существует исходная тройка взаимно простых чисел. Поэтому применим формулу исходного алгоритма





По условиям алгоритма, должно получиться равенство



Предположим, что такое равенство возможно. Но коэффициент числа «b» меньше 1, так как сумма, которую представляет число «с», больше слагаемого, которое представляет число «b».



Из этого следует что



что соответствует утверждению Ферма о невозможности существования натуральных чисел, и не соответствует условиям алгоритма, это наглядно показывает ,что не существует целочисленных решений для уравнений вида



При



А так как в приведенных выше примерах доказано, что алгоритм является верным не только для натуральных, но и для всех рациональных чисел, то можно уверенно утверждать: не существует даже рациональных решений для уравнений этого вида.

Итак, подведем итог этого исследования.

1) Доказано, что существует универсальный алгоритм или, как указано в 10-й проблеме Гильберта, единый способ, при помощи которого возможно после конечного числа операций установить разрешимо или нет уравнение вида



в целых рациональных числах

2) Доказано, что при помощи универсального алгоритма решение в натуральных и рациональных числах возможно для этого уравнения при n=2

3) Доказано, что для уравнений



При



Решений в натуральных и рациональных числах не существует.

Сноски

[1] Ю. В. Матиясевич, Десятая проблема Гильберта – М., Наука, 1993

[2] Давид Гильберт (23.01.1862 – 14.02.1943) математик-универсал, внес значительный вклад в развитие многих областей математики.

[3] Диофант Александрийский древнегреческий математик, живший в 3-ем веке н.э.

[4] Пифагор Самосский ( 570-490г до н.э.) древнегреческий философ, математик.

[5] Пьер де Ферма (17.09.1601 – 12.01. 1665) французский математик-самоучка.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.