Абсолютный минимум. Как квантовая теория объясняет наш мир - [22]
Интерференция волн разной длины
Так что же представляют собой фотоны, электроны, камни и всё остальное? Это частицы или волны? Чтобы убедиться в отсутствии противоречий в квантовомеханическом описании природы вещей, нам надо подробнее обсудить волны и их интерференцию. Обсуждая рис. 3.2 и 3.3, мы уже говорили о том, что волны могут интерферировать конструктивно, давая более крупную волну, и деструктивно — так, что получается волна меньшего размера или волны полностью гасят друг друга. В примерах, представленных на рис. 3.2 и 3.3, волны имеют одинаковую длину. Когда они складываются конструктивно (см. рис. 3.2), все положительные пики одной волны приходятся на положительные пики другой, и то же самое относится к отрицательным пикам, так что в результате их амплитуда увеличивается. Когда волны складываются деструктивно (см. рис. 3.3), положительные пики приходятся на отрицательные и наоборот, что приводит к их гашению. Однако волны разной длины тоже могут интерферировать.
На рис. 6.2 изображены графики пяти волн разной длины. Единицы измерения длины здесь не имеют значения. Важно то, что эти пять волн имеют длины λ, равные 1,2; 1,1; 1,0; 0,9 и 0,8. Фазы этих волн подогнаны так, чтобы они совпадали в точке x=0, где x — горизонтальная ось. Волны совпадают в точке x=0 в том смысле, что все они имеют в этом месте положительный пик. Однако поскольку волны имеют разную длину, их пики не обязательно будут совпадать в других точках вдоль оси x. Например, вблизи точек x=10 и −10 тёмно-серая волна имеет максимум, а светло-серая пунктирная — минимум. Вдобавок около точки x=10 одна волна имеет отрицательное значение, а другая — положительное. В окрестностях x=16 и −16 две волны имеют максимум, а одна волна — минимум. Важный момент здесь состоит в том, что при разной длине все волны могут совпадать в одной точке (x=0, например), но в общем случае, в других точках, одни волны будут положительными, а другие — отрицательными.
Рис. 6.2.Пять изображённых здесь волн имеют разную длину λ: 1,2; 1,1; 1,0; 0,9 и 0,8. Их фазы подобраны таким образом, чтобы пики всех волн приходились на точку 0 по горизонтальной оси. Однако поскольку волны имеют разную длину, они не совпадают в других местах в отличие от рис. 3.2. Обратите внимание на то, что вблизи точек x=10 и −10 тёмно-серая волна имеет положительный пик, тогда как пунктирная светло-серая волна — отрицательный
На рис. 6.3 показан результат суперпозиции (сложения) пяти волн с рис. 6.2. В точке x=0 (на горизонтальной оси) рис. 6.2 все волны точно совпадают по фазе. В результате их суперпозиция (сложение всех волн), представленная на рис. 6.3, здесь образует максимум. На рис. 6.2 эти волны совпадают по фазе только в точке строго x=0. Тем не менее вблизи x=0 различие в длинах волн ещё не даёт большого сдвига пиков одной волны относительно другой, так что волны остаются очень близкими по фазе. Другой набор максимумов возникает вблизи точек x=6 и −6. Однако эти максимумы не столь велики, как в точке x=0, поскольку, как видно на рис. 6.2, не все пики волн совпадают друг с другом. За пределами x=±10 амплитуда суперпозиции становится небольшой. В любой точке одни волны положительные, а другие — отрицательные, и это приводит к деструктивной интерференции. Поскольку имеется только пять волн, деструктивность этой интерференции оказывается лишь частичной.
Рис. 6.3.Суперпозиция пяти волн, изображённых на рис. 6.2. В точке x=0 (по горизонтальной оси) волны на рис. 6.2 находятся в фазе, так что они складываются конструктивно. Вблизи x=0 волны всё ещё очень близки по фазе, но следующие максимумы возле точек x=6 и −6 уже не столь велики, как максимум на x=0. В областях от 10 до 20 и от −10 до −20 вследствие разницы в длинах волн одни волны оказываются положительными, а другие — отрицательными. Здесь имеет место их значительное взаимное подавление
Рис. 6.4.Суперпозиция 250 волн с длинами, равномерно распределёнными в диапазоне от 0 до 4. По сравнению с рис. 6.3, где показана суперпозиция пяти волн, эта суперпозиция имеет значительно более выраженный пик при x=0, в области максимальной конструктивной интерференции, а деструктивная интерференция вызывает более сильное подавление в других областях. Амплитуда суперпозиции сходит на нет с приближением к отметке 20
На рис. 6.4 показана суперпозиция 250 волн разной длины. Длины этих волн равномерно распределены в диапазоне от 0 до 4. Как и в случае с пятью волнами (см. рис. 6.2) и их суперпозицией (см. рис. 6.3), все эти волны имеют одинаковую амплитуду. Фазы 250 волн подогнаны так, чтобы совпадать при x=0. Поскольку здесь волн гораздо больше и диапазон их длин шире, чем в случае, представленном на рис. 6.3, пик вблизи x=0 значительно уже и с удалением от него затухание происходит гораздо быстрее. Небольшие осцилляции возникают вследствие того факта, что все волны в суперпозиции имеют одинаковую амплитуду. Если амплитуда волны в середине распределения по длинам волн является наибольшей, а амплитуды других волн становятся всё меньше и меньше по мере удаления от средней длины волны, то можно получить суперпозицию, которая плавно спадает до нуля без набора убывающих по амплитуде осцилляций. Этот тип суперпозиции будет обсуждаться ниже.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.