А. С. Попов и советская радиотехника - [30]
Михаил Васильевич Шулейкин.
Продолжателем дела А. С. Попова в Военно-Морском Флоте Советской страны стал А. И. Берг, руководивший группой морских радиоспециалистов. Основные работы этой группы были направлены на перевооружение кораблей флота современной радиоаппаратурой. Совмещая эту деятельность с воспитанием, организацией и развитием школы радиоспециалистов в Ленинграде, А. И. Берг наряду с М. В. Шулейкиным в Москве был учителем нескольких поколений радиоинженеров, преподавателей втузов, военных академий, научных работников наших многочисленных научно-исследовательских организаций.
Широкое победоносное внедрение электронных ламп в радиотехнику было той основой, на которой ещё одна многочисленная группа советских радиофизиков во главе с академиками Л. И. Мандельштамом и Н. Д. Папалекси создала учение о так называемых нелинейных колебаниях. Это учение, применяемое в настоящее время в широких масштабах не только в радиотехнике, но и в самых отдалённых на первый взгляд областях науки и техники, было развито в СССР и на первых же порах стало обгонять, а в настоящее время опередило на недосягаемое расстояние всё, что было сделано в этой области за рубежом.
Нелинейные колебания особенно свойственны схемам и радиотехническим устройствам, в которых применялись электронные лампы. Работа таких устройств не зависела от начальных условий режима, схема с лампой не подчинялась закону Ома, сама по себе лампа в схеме вызывала изменение режима, обусловливала появление новых частот колебаний, их преобразование. Нелинейными в своём существе оказались такие распространённые методы радиотехники, как стабилизация частоты, модуляция, детектирование, синхронизация. Остро чувствовалось, что прежние линейные методы исследования схем с лампами неудовлетворительны, не дают должных результатов, но нового метода исследований разработано не было. Академики Мандельштам и Папалекси в своих работах показали, что нелинейная радиотехника может развиваться на основе строгих методов решения вопросов динамической устойчивости периодических процессов, разработанных ещё в 90-х годах прошлого столетия знаменитым русским математиком А. М. Ляпуновым.
Одной из первых разработок нелинейной школы был вопрос об автоколебаниях. Так называются колебания, происшедшие в системе не под влиянием внешнего воздействия, а из-за способности самой системы поддерживать возникшие в ней колебания. Так, например, всякий радиопередатчик представляет собой по существу автоколебательную систему. Но если в радиотехнике автоколебания нужны, то существуют случаи, когда такие колебания опасны и нежелательны, например, в различных машинах, строительных сооружениях. Разработка вопросов автоколебаний в радиотехнике привела к тому, что исследование этих колебаний в других отраслях техники значительно упростилось. Укажем, например, что такими методами пользуются в практической аэродинамике, когда надо бороться с автоколебаниями самолёта, возникающими под действием потока воздуха.
В изучении особенностей коротких, а затем и ультракоротких волн, занимающих в современной радиотехнике первенствующее место занимали работы советских радио-специалистов. Начало работам по особенностям распространения коротких волн в ионосфере положил М. В. Шулейкин, первым и много ранее, чем зарубежные учёные, указавший на необходимость учёта сложной структуры ионизированной атмосферы.
Широко известна формула М. В. Шулейкина, выведенная им и опубликованная ещё в 1923 г. Опубликованная за рубежом только в 1931 г. формула Вандер-Поля оказалась по существу целиком совпадающей с результатами М. В. Шулейкина.
Уже в 1932 г. А. И. Щукин, систематизировав накопившиеся к тому времени опытные данные, разработал метод расчёта напряженности поля на коротких волнах. Аналогичные работы зарубежных учёных были опубликованы значительно позднее.
Акад. Б. А. Введенский в 1926–1928 гг. первым разработал закон распространения ультракоротких волн на близких расстояниях. Из его формулы следовало, что ввиду интерференции прямого и отражённого от земли луча, убавление напряжённости электромагнитного поля над сухой почвой происходит гораздо быстрее (в первом приближении квадратично с расстоянием), чем для длинных волн, и в значительной мере зависит от высот передающей и приёмной антенн. Аналогичный вывод появился в зарубежной печати на пять лет позже. В 1935 г. Б. А. Введенский опубликовал результат своих дальнейших работ — закон диффракционного распространения.
Колебания сверхвысоких частот были получены в России ещё известным физиком П. Н. Лебедевым. Уже в советский период физик Глаголева-Аркадьева в 1922 г. разработала излучатель и с ним получила волны длиной короче 1 миллиметра. Академик Б. А. Введенский со своими учениками А. Г. Аренбергом, Астафьевым и др. вёл опыты по радиосвязи на ультракоротких волнах на земле, с аэростатом и самолётами. В дальнейшем была построена первая в мире радиовещательная станция, работавшая на ультракоротких волнах. Последующие опыты проводились с применением первых магнетронов отечественного происхождения. В Советском Союзе были разработаны инженером Н. Д. Девятковым и конструкции электронных ламп — триодов сантиметрового диапазона. После того как результаты советских разработок были опубликованы в нашей печати, эти конструкции заимствовали иностранные учёные, прекратив дальнейшие бесполезные попытки создать свои собственные лампы.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Доктор геолого-минералогических наук, участник Советско-Монгольской палеонтологической экспедиции Валериан Иннокентьевич Громов, рассказывает об эволюции нашей планеты и жизни на ней.
Бесконечно велик и разнообразен мир, в котором мы живём! Цветущие долины и высокие скалистые горы; бескрайние ковыльные степи и зелёные массивы лесов; песчаные, опалённые солнцем пустыни и тучные чернозёмные поля. Многоликая, многообразная природа! А как богат и разнообразен мир животных и растений! От (полярных областей до экватора поверхность Земли покрывают сотни тысяч разнообразнейших растений. Несколько десятков тысяч видов позвоночных животных известно учёным. А различных насекомых насчитывается свыше одного миллиона! И всё это многообразие Земли расцвечено тысячами красок.
В этой книге авторы познакомят читателя с тем, что представляют собой микробы, как они живут, как люди научились бороться с вредными микробами и заставили работать на себя полезных микробов и какова роль мировой науки в разрешении всех этих важнейших для человеческой практики вопросов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.