500 схем для радиолюбителей. Дистанционное управление моделями - [20]

Шрифт
Интервал

Формирователь первого канального импульса реализован на транзисторе VT3. В исходном состоянии транзистор открыт за счет протекания базового тока через резисторы R5, R6. Напряжение на его коллекторе близко к нулю. Времязадающий конденсатор С2 на предыдущем этапе работы схемы заряжен практически до напряжения питания через верхнюю часть резистора R4 и базовый переход транзистора VT3 (рис. 2.32, б). На левой его обкладке — потенциал источника (+5 В), а на правой — небольшое базовое напряжение (окаю 0,8 В) открытого транзистора VT3.



Рис. 2.32. Эпюры в характерных точках формирователя


С появлением на коллекторе VT2 отрицательного импульса (рис. 2.32, a, момент t>1) нижний вывод резистора R4 подключается через открывшийся VT2 к корпусу. Напряжение на базе транзистора VT3 теперь определяется алгебраической суммой отрицательного напряжения на С2 и положительного напряжения с движка потенциометра R4. Его вполне достаточно для надежного запирания VT3 (рис. 2.32, в). Напряжение на коллекторе этого транзистора скачком возрастает (рис. 2.32, г), и начинается формирование канального импульса. Его окончание наступит в момент времени t>2, когда за счет перезаряда конденсатора С2 напряжение на базе VT3 достигнет величины отпирания (примерно 0,8 В).

Длительность сформированного импульса будет определяться постоянной времени цепи перезаряда

τ = C2(R5 + R6)

и величиной напряжения на движке потенциометра. Последнее обстоятельство и используется для управления канальным импульсом.

Для улучшения формы вырабатываемого импульса используется элемент DD1.2, сигнал на выходе которого изображен на рис. 232, д.

В течение первого канального импульса транзистор VT3 заперт, а значит нижний вывод потенциометра R5 отключен от корпуса. Происходит быстрый заряд конденсатора С4 через верхнюю часть этого резистора до напряжения питания, подготавливая его к стадии формирования второго канального импульса (рис. 232, е). Она начнется, как только закончится первый канальный импульс с отпиранием транзистора VT3 (момент t>2). Процесс формирования ничем не отличается от только что рассмотренного.

Отрицательные импульсы нормированной длительности, соответствующие границам между канальными (рис. 2.33, вывод 11 микросхемы DD1), формируются элементом DD1.4 из продифференцированных импульсов с выводов 3, 4, 10. Их длительностью можно управлять, меняя постоянное напряжение на выводе 12, 13 с помощью подстроечного резистора R13.

Подобные манипуляции приводят к смещению положительных экспоненциальных импульсов с выхода дифференцирующих цепочек по вертикали (рис. 233, вывод 12) относительно уровня опрокидывания элемента DD1.4 (приблизительно 2,5 В). Каскад на транзисторе VT5 инвертирует указанные импульсы и используется в случае применения шифратора совместно с ЧМ-передатчиком.



Рис. 2.33.Эпюры напряжений в нормирователе


Если в аппаратуре предусмотрена амплитудная манипуляция, то необходимость в нем отпадает, а вывод 11 микросхемы используется для замыкания на корпус эмиттерной цепи транзистора задающего генератора передатчика либо одного из его промежуточных каскадов.

Печатная плата двухканального варианта приведена на рис. 2.34.



Рис. 2.34. Печатная плата


Как видно, потенциометры, связанные с ручками управления, закрепляются непосредственно на плате с помощью хомутиков и проводников, соединяющих выводы потенциометров с отверстиями в плате. Ручки управления пропускаются сквозь прямоугольные вырезы в плате. Разводка сделана в расчете на применение в конструкции потенциометров типа СП4-1. Их износостойкость составляет не менее 25000 циклов. Если потенциометры располагать не на печатной плате, то можно использовать практически любые, важно лишь, чтобы их характеристика была типа А (линейная зависимость сопротивления от угла поворота).


Детали и конструкция

Транзисторы могут быть типов КТ315 или КТ3102 с любым буквенным индексом. Микросхему DD1 можно заменить на K561J1A7. Конденсаторы С1, С2, С4, С6 желательно использовать пленочные или бумажные (К73-17, МБМ и др.). Диоды любые малогабаритные.


Настройка

Настройка периода повторения и длительностей канальных импульсов полностью повторяет аналогичные операции в предыдущем варианте шифратора. Требуемая длительность импульсов командной посылки (0,5 мс) на 11 выводе DD1 устанавливается потенциометром R13. При реализации восьмиканального варианта период повторения устанавливается равным 20 мс, для чего емкость конденсатора С1 увеличивается до 0,5 мкФ.


2.3.6. Многоканальный шифратор на таймерах КР1006ВИ1


Принципиальная схема

Микросхема таймера КР1006ВИ1 является многофункциональным устройством и используется в самых различных радиолюбительских конструкциях. На ее базе удобно реализовывать как автоколебательные, так и ждущие мультивибраторы.

Длительность импульсов в обоих случаях можно регулировать изменением постоянных времени цепей заряда и разряда накопительного конденсатора или изменением величины постоянного напряжения на выводе 5 микросхемы.

Как при настройке предлагаемого образца, так и при самостоятельном конструировании других устройств с использованием КР1006ВИ1, полезно представлять ее внутреннее устройство.


Рекомендуем почитать
Искусство схемотехники. Том 1 [Изд.4-е]

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.


Искусство схемотехники. Том 3 [Изд.4-е]

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.


Электроника?.. Нет ничего проще!

Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.Книга рассчитана на широкий круг читателей.


А. С. Попов и советская радиотехника

Более полувека назад произошло одно из самых славных событий в истории русской науки: 7 мая 1895 г. великий русский учёный А. С. Попов продемонстрировал изобретённый и построенный им первый в мире радиоприёмник. С тех пор радиотехника прошла огромный путь развития — от посылки и приёма телеграфных сигналов до передачи изображений по радио. Радио стало мощнейшим средством связи и обороны нашей Родины, орудием политического и культурного воспитания, могучим средством организации масс.


Рецептура радиолюбителя (Консультация центрального радиоклуба)

В данной листовке приводится ряд рецептов склеивания, встречающихся в радиолюбительской практике, способы художественной отделки деревянных ящиков для радиоаппаратуры и некоторые практические советы радиолюбителям.


Радиоцензура

В отличие от темы иновещания тематика радиотехнической борьбы между "социалистическим" лагерем и капиталистическими странами остаётся практически неизвестной массовому читателю.В данной работе автор - Римантас Плейкис (бывший министр связи Литвы в 1996-1998 гг.) подробно рассматривает радиоцензуру (синонимы: радиозащита, радиоподавление, постановка помех, глушение, радиопротиводействие, забивка антисоветских радиопередач, радиоэлектронная борьба).Без преувеличения эта статья, написанная в 2002-2003 годах, закрывает еще одно "белое пятно" в противостоянии двух военно-политических блоков и раскрывает технологию радиотехнической цензуры.К сожалению, для русскоязычных читателей доступен только электронный вариант данного исследования.