25 этюдов о шифрах - [7]

Шрифт
Интервал

2.2. Случайность и закономерность в двоичных последовательностях

Понятие последовательности известно еще со школьных лет. Однако последовательности, которые там изучались, были детерминированными — они однозначно восстанавливались по их нескольким элементам. Так, арифметическая и геометрическая прогрессии восстанавливаются по любым двум своим подряд идущим членам. Значения многочлена в целых точках также образуют детерминированную последовательность: она определяется любыми n+1 своими членами, где n — степень данного многочлена (докажите это!).

Но существуют и другие последовательности, так называемые случайные. Для них, в отличие от детерминированных, вообще говоря, нельзя определить очередной член последовательности, зная предыдущие. Опишем простейший способ получения двоичной случайной последовательности.

Пусть мы подбрасываем «правильную» монету. В зависимости от того, как она падает, полагаем очередной член последовательности равным 0 (орел) или 1 (решка). Как показывает опыт, обычно нельзя угадать, как монета упадет в очередной раз. Однако, если подбрасывать монету достаточно долго, примерно в половине случаев выпадет орел, а в половине — решка. Говорят, что монета падает случайным образом, причем в каждом подбрасывании с одинаковой вероятностью ½ выпадает орел (0) или решка (1).

Однако бывают ситуации («кривая монета»), когда орел и решка выпадают с разной вероятностью — p и q соответственно (pq). Отметим, что p+q=1! В случайной двоичной последовательности, полученной на основе подбрасывания «кривой монеты», p можно считать частотой появления нуля, а q — частотой появления единицы.

Для тех кто изучал пределы, уточним: если обозначить через S>0(k) число нулей, а через S>1(k) — число единиц среди k первых членов нашей последовательности, то тогда предел отношения S>0(k)/k равен p и предел отношения S>1(k)/k равен q при k стремящемся к бесконечности.

Контрольный вопрос. Пусть мы случайным образом подбрасываем монету, причём p=q=½ и первые сто членов соответствующей последовательности равны 1 (100 раз подряд выпала решка). Чему равно вероятность того, что 101-ым членом этой последовательности снова будет 1?

Правильный ответ на этот вопрос: ½. Так как q=½, а случайность нашей последовательности как раз и означает, что каждый очередной её член равен 1 с вероятностью qнезависимо от того, какими были предыдущие её члены.

Обычно последовательности, с которыми на практике приходится иметь дело, вообще говоря, не строго случайные (неслучайные). Изучение случайных и неслучайных двоичных последовательностей имеет важное значение для криптографии. Например, выявление закономерностей в шифрованных сообщениях очень полезно при вскрытии шифра (см. этюд 2.7). В этюде 2.5 вы также узнаете, что для построения абсолютно стойкого шифра необходимо уметь получать совершенно случайный ключ.

Задачам различения случайной и неслучайной последовательностей, а также выявления закономерностей в неслучайных последовательностях посвящено много исследований в различных областях математики. Так, например, один из основных разделов математической статистики — это проверка статистических гипотез, в котором, в частности, разрабатываются методы различения гипотез о природе и характеристиках наблюдаемых последовательностей. Другой пример — это активно изучаемый в современной теоретической криптографии гипотетический объект — псевдослучайный генератор. При изучении этого объекта используются многочисленные результаты теории сложности алгоритмов и вычислений. Говоря неформально, псевдослучайный генератор вырабатывает такие последовательности, которые трудно отличить от случайных и из которых трудно извлечь закономерности. Строгие определения необходимых понятий выходят за рамки нашей книги.

Близким по духу, но более простым и хорошо известным, особенно для программистов, является такой объект, как датчик случайных чисел. Это — некоторое устройство или программа, которая вырабатывает псевдослучайные последовательности. Псевдослучайные последовательности в некоторых ситуациях считают неотличимыми от случайных, причем для разных ситуаций и задач подбирают подходящие датчики. Чем более сильные требования накладываются на случайность вырабатываемых последовательностей, тем более сложным является соответствующий датчик случайных чисел. Многие шифрмашины можно считать датчиками случайных чисел, удовлетворяющими очень высоким требованиям на качество вырабатываемых последовательностей.

Опишем, например, один простейший датчик, предложенный в 1949 году Д.Х. Лемером и в дальнейшем получивший название линейного конгруэнтного метода. Для заданного начального числа a>0 он вырабатывает бесконечную последовательность натуральных чисел {a>k} по следующему рекуррентному закону:

a>k=d+a>k−1(modN).

Здесь параметры датчика d, , N — некоторые целые числа. Запись a=b(modN), вообще говоря, означает, что ab делится на число N; в данном случае в качестве a>k берется остаток от деления d+a>k−1 на N.

Поскольку все члены последовательности {a>k} — неотрицательные целые числа, не превосходящие


Рекомендуем почитать
Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Возможен ли вечный двигатель?

К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.